Compact Course Python
Exercise 4

1 Fractions

Define a class for rational numbers (see lecture slides). The constructor shall take
numerator and denominator as its arguments. The instance objects shall work with
the standard Python operators +,-,* and /:

>>> Rat(2,5) + Rat(3,4)
23/20

To achieve this, you need to implement __add__(self,b), sub__(self,b), mul (self,b)
and __truediv__(self,b), which all return new Rat objects. To make the pretty-

print work, you need to implement the method __repr_ _(self) which returns a

string.

Extra task: Implement the Euclidean Algorithm to compute the greatest common
divisor and use it for a method that cancels down Rat objects. Like in the example
above, all calculations (4, *, ...) shall return cancelled fractions.

2 Tic-tac-toe

Goal of this exercise is to implement Tic-tac-toe as a small Python game for two
players. The interaction with the game is managed via the shell. Tic-tac-toe is placed
on a game board with 3x3 squares. Two players using different symbols move in turns
and put their symbol on a free square. The winner is the one that first fills a whole
row, column or diagonal with his or her symbols.

(See also: http://en.wikipedia.org/wiki/Tic-tac-toe)

We provide you with a ready-to-use class named GameBoard that implements diffe-
rent functionalities of a game board: You can initialize its constructor with the edge
length (= number of squares) of the board. For you own methods, you mainly need
the method that put a symbol on a certain square and the one that checks which
symbol is on a certain square. Squares are named like in a coordinate plane, starting
at 0. (E.g. (1 1) is the field in the middle of the Tic-tac-toe board.)

We also wrote a game template for you (TicTacToe). You have to implement its
(empty) methods:



e __init__ shall initialize the board and every other helper structure that you’ll
need later. We already fixed the symbols for the two players here: self.white
is the symbol of the player that opens the game, the other one is self.black.

o isLegalMove(self ,x,y,s) shall return True if the symbol s can be placed
on square ((x,y)), otherwise False (in case the square is taken or does not
exist).

« move(self ,x,y,s) puts a symbol s on the square (x,y)

o evaluateBoard(self) checks the current board. The method shall return -1
if the game is not over yet; 0 if the first player (white) has won the game; 1
for a draw; 2 if the second player has won.

We implemented the method play() for you. It processes the players’ moves and
prints the current board to the screen. It also announces the winner (or a draw)
as soon as the game has finished. You can make moves by entering the coordinates
of the next square you want to put you piece on. (The player may enter human-
readable coordinates - the numbers start at 0, (2,2) is the middle of the board.
This only concerns you in case you're playing the game — for implementing your
algorithms, stick to the hints given before.)

+ ———— + ===+ ———— +
+ + + 0 +
+ ———— 4+ == + ———— +
+ + x + x +
+ ———— 4+ ===+ ———= +
+ o + + o +
+ ———— + ———— + ———— +
x’s move?

12

+ ———— 4 ———= + ———= +
+ + + o +
+ ———— + ———— + ———— +
+ x + x + x +
+ ———— + - + ———— +
+ o + + o +
+ ———— 4 ===+ ———— +
x wins!




