
SPUD: Integrierte
 Satzplanung & Realisierung

Proseminar “Generierung”

Alexander Koller
21. Januar 2011



The NLG pipeline

• Most generation systems go through the 
“pipeline” sequentially:
‣ text planning → sentence planning → surface realization

• In terms of “goals” and “choices”: Make all 
choices of a certain type first.

• What is sentence planning?
‣ somewhat artificial concept



Tasks vs. pipeline stages

AlthGen

Ana

CGS

Drafter

Drafter2

Exclass

FoG

GhostWriter

Gist

Gossip

HealthDoc

Joyce

Komet

LFS

ModEx

Pat Claim

PlanDoc

PostGraphe

Proverb

Lex Agg Rhet Ref Ord Seg Sal

Reiter/Dale

Figure 2: Timing of Tasks in Systems Surveyed

1. Many of the systems surveyed claimed or appeared to follow the three-stage
model, however, it was not possible to assign detailed functional descriptions
to the three modules that were compatible with all, or even most, systems.

2. Many of the systems had functional submodules in common (such as ‘referring
expression generation’), but the order of execution of those submodules, and
their assignment to the three stages did not form a single overall consistent
pattern.

3. There was no simple definition of the data interfaces between the proposed
consensus modules, or even the lower level functional modules, in the systems
surveyed — most systems manipulated data at several linguistic levels in fairly
complicated ways, and ‘snapshots’ of the data at the putative interfaces did
not reveal any strong patterns of what was and what was not instantiated in
different systems.

Thus, while their proposed “consensus” model represents an important observa-
tion about the field, Reiter and Dale’s particular position about the definition and
timing of modules, as well as their assumptions about how the types of data come
together in the interfaces, although examples of good NLG system design, are too
restrictive for the general case. To be useful, the rags architecture would need to
take a more flexible position on these issues.

2.2 Requirements for the rags architecture

On reflection, perhaps the conclusions of our survey were not so surprising. Fun-
damentally, the NLG task can be thought of as a simultaneous constraint satisfac-
tion problem involving knowledge at several linguistic levels [De Smedt et al., 1996].
Researchers proposing novel architectures and search methods for NLG have main-
tained that efficient generation of optimal texts cannot be achieved by making
choices in a predetermined order (for instance, Danlos [Danlos, 1984]; Wanner and
Hovy [Wanner and Hovy, 1996]; Mellish et al. [Mellish et al., 1998]). This argues
against there being an optimal pipeline or layered approach as found in much cur-
rent NL understanding work. Greater complexity in data interaction and more
variation in order of processing might be expected, making the task of developing
a reference architecture more challenging.

5

(Mellish et al. 06, RAGS report)

TP SP SR



Grammar in RE generation



Grammar in RE generation
the bricklayer



Grammar in RE generation
the Englishman



Grammar in RE generation
the NOUN



Grammar in RE generation
the                      astronomerADJECTIVE



Grammar in RE generation
the French astronomer



Grammar in RE generation
the                     FrenchmanADJECTIVE



Grammar in RE generation
the ??? Frenchman



RE generation vs. realization
the bricklayer and the doctor

the non-Europeans

?

¬ european

bricklayer ⊔ doctor



Interacting REs

• Referring expressions can constrain each 
other:

(Stone & Webber 98)

What do you call
this guy?



Lessons from the example

• Referring expressions generation
‣ is typically subsumed under sentence planning

‣ requires access to grammatical resources

‣ but theoretically, only realizer should see grammar

• RE that looks good to sentence planner 
might be bad or impossible for realizer.

• How to keep SP and SR resources 
synchronized?



Today

• Separation between sentence planning and 
surface realization is artificial.

• Tree-Adjoining Grammars (TAG).

• SPUD: Integrated sentence planning and 
surface realization based on TAG.



Tree-adjoining grammars

• Lexicalized grammar formalism, invented by 
Aravind Joshi.

• Idea: Build syntactic derivation by 
combining elementary trees by substitution 
and adjunction.

• Goes beyond context-free expressive 
power.



TAG: A grammar, part 1

elementary
trees

substitution
nodes

John

NP

rabbits

N

NP

Mary

NP

S

NP ! VP

sleeps

IV

S

NP ! VP

loves

TV NP ! 

S

NP ! VP

eats

TV NP ! 

S

NP ! VP

runs

IV

lexical
anchors



Substitution

• Elementary trees can be combined by 
substituting a substitution node with 
another elementary tree:

Mary

NP

Mary

NP

S

VP

loves

V

rabbits

N

NP

S

NP ! VP

loves

TV NP ! 

rabbits

N

NP



Grammar, Part 2

VP *

VP

passionately VP *

VP

quickly

white

N

N * N *

N

P

in

PP

NP ! 

elementary trees like these
are called auxiliary trees

because they have
foot nodes



Adjunction

• Auxiliary trees can be adjoined into nodes 
of other elementary trees.

Mary

NP

S

NP ! VP

loves

TV NP ! 

rabbits

N

NP

VP *

VP

passionately

VP

passionatelyMary

NP

S

VP

loves

TV

rabbits

N

NP



Derivation trees

• Record the structure of a TAG derivation in 
a derivation tree:

Mary

NP

S

NP ! VP

loves

TV NP ! 

rabbits

N

NP

VP *

VP

passionately1

2
3

4
3

1

2 4

The combination of the
elementary trees is called
the derived tree:

VP

passionatelyMary

NP

S

VP

loves

TV

rabbits

N

NP



Lexical ambiguity in TAG

• Words in TAG highly ambiguous because e-
trees contain so much grammatical context:

S

NP ! VP

eats

TV NP ! 

S

NP ! VP

eats

IV

S

NP ! VP

eats

TV NP 

NP ! 

S

!



TAG: Summary

• Spell out grammatical use of each word in 
an elementary tree (“extended domain of 
locality”).

• Two-sided adjunction makes TAG more 
expressive than context-free grammars.

• “Mildly context-sensitive” grammar 
formalism; can be parsed in time O(n6).



TAG in generation

• NLG is about goals and choices.

• In TAG: choice = selection of e-tree to add 
to the current derivation, top-down.

Mary

NP

S

NP ! VP

loves

TV NP ! 

rabbits

N

NP

VP *

VP

passionately



SPUD

• SPUD (Matthew Stone, late 90’s):
‣ equip e-trees with semantic and pragmatic information

‣ use this information to drive top-down TAG 
generation

‣ heuristic search for a complete derivation

• This solves (some) sentence planning and 
realization at the same time.

• Different versions: Stone & Doran, ACL 98; 
Stone et al., Computational Intelligence 03.



SPUD: Lexicon entries

S

NP ! VP

loves

TV NP ! 

S:x

NP:y ! VP:x

loves

TV:x NP:z ! 

semantic indices

semantic content:  {loves(x,y,z)}

semantic condition:  {animate(y)}

pragmatic condition:  nothing

NP:x

the N:x

rabbit

sem. cont.:  {rabbit(x)}
sem. cond.:  nothing
prag. cond.:  {unique-id(x),
                   discourse-old(x)}

sem. cont.:  {name(x,Mary)}

sem. cond.:  nothing

prag. cond.:  nothingMary

NP:x

white

N:x

N *

sem. cont.:  {white(x)}

sem. cond.:  nothing

prag. cond.:  nothing



Combining tree instances

S:x

NP:y ! VP:x

loves

TV:x NP:z ! 

NP:x

the N:x

rabbit

Mary

NP:x

white

N:x

N *Mary

NP:x2

S:x1

NP:y1 ! VP:x1

loves

TV:x1 NP:z1 ! 

NP:x
3

the N:x
3

rabbit

white

N:x
4

N *

substitution:   {e/x1, m/y1, m/x2, a/z1, a/x3, a/x4}

allowed because
NP:m = NP:m allowed because

NP:a = NP:a



SPUD: Knowledge base

Semantic information:
{loves(e,m,a), name(m,Mary), rabbit(a), rabbit(b), 
 white(a), brown(b), ...}

Pragmatic information:
{discourse-new(a), unique-id(a), ...}

Communicative goal: {communicate “loves(e,m,a)”}

Root node specification: generate an S:e

a b



The SPUD search algorithm

• States consist of:
‣ list of unsatisfied communicative goals

‣ TAG derivation tree

‣ substitution for semantic indices

‣ “constraint network” to keep track of REs

• Initial state:
‣ initial communicative goal

‣ empty derivation, starting with an open substitution 
node according to the root node specification

‣ empty substitution 



The SPUD search algorithm

• Search step:
‣ choose a new elementary tree from the lexicon

‣ choose a substitution for the indices of this tree

‣ if tree instance can be added to the derivation and the 
semantic and pragmatic conditions are satisfied, then 
add it to the derivation and update search state

• Repeat this step until in a goal state, i.e.:
‣ all communicative goals expressed

‣ derivation is grammatically complete

‣ all REs are unique



The search heuristic

• In each step, select the single e-tree that is 
best according to the following criteria:
‣ contribution to communicative goals

‣ ambiguity of referring expressions

‣ salience of individuals that are selected for indices

‣ number of remaining flaws in syntactic derivation

‣ specificity of semantic content

• SPUD uses a greedy search strategy:
It never backtracks.



An example
a b

loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)KB:

substitution:   { }

loves(e,m,a)CG: S:eRoot:

S:e ! 

distractors:



An example
a b

loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)KB:

substitution:   {e/x1, m/y1, a/z1}

loves(e,m,a)CG: S:eRoot:

S:e ! 

S:x1

NP:y1 ! VP:x1

loves

TV:x1 NP:z1 ! 

semantic content:  {loves(e,m,a)}

pragmatic condition:  nothing

substitution:   { }

distractors: y1: {a,b,e}
z1: {m,b,e}



An example
a b

loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)KB:

substitution:   {e/x1, m/y1, a/z1, m/x2}

loves(e,m,a)CG: S:eRoot:

S:e ! 

S:x1

NP:y1 ! VP:x1

loves

TV:x1 NP:z1 ! 

Mary

NP:x2

sem. cont.:  {name(m,Mary)}
prag. cond.:  nothing

substitution:   {e/x1, m/y1, a/z1}

distractors: y1: {a,b,e}
z1: {m,b,e}
y1: unique
z1: {m,b,e}



An example
a b

loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)KB:

substitution:   {e/x1, m/y1, a/z1, m/x2}

loves(e,m,a)CG: S:eRoot:

S:e ! 

S:x1

NP:y1 ! VP:x1

loves

TV:x1 NP:z1 ! 

Mary

NP:x2

NP:x
3

the N:x
3

rabbit

substitution:   {e/x1, m/y1, a/z1, m/x2, a/x3}

sem. cont.:  {rabbit(a)}

prag. cond.:  {unique-id(a), discourse-new(a)}

distractors: y1: unique
z1: {m,b,e}
y1: unique
z1: {b}



substitution:   {e/x1, m/y1, a/z1, m/x2, a/x3}

An example
a b

loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)KB:

loves(e,m,a)CG: S:eRoot:

S:e ! 

S:x1

NP:y1 ! VP:x1

loves

TV:x1 NP:z1 ! 

Mary

NP:x2

NP:x
3

the N:x
3

rabbit

white

N:x
4

N *

substitution:   {e/x1, m/y1, a/z1, m/x2, a/x3, a/x4}

sem. cont.:  {white(x)}
prag. cond.:  nothing

distractors: y1: unique
z1: {b}
y1: unique
z1: unique



SPUD captures SR + SP

• Surface realization:
‣ derivation is grammatical according to TAG grammar

‣ semantic content subsumes communicative goal

‣ semantic content of sentence is supported by the 
knowledge base

• Very “semantic” approach to surface 
realization:  Input consists of semantic 
representations, not abstract syntax 
specifications.



SPUD captures SR + SP

• Referring expressions (⊂ sentence planning):
‣ definite descriptions are required to be unique

• Integration with realization
‣ avoids problems mentioned in the introduction



Interacting REs

• Use semantic conditions to generate very 
succinct referring expressions:
‣ “Take the rabbit from the hat”

S:x

TV:x NP:y !

from NP:z ! take

PP:z
sem. cont.: {take(x,y,z)}
sem.cond.: {in(y,z)}

(Stone & Webber 98)



SPUD captures SR + SP

• Lexical choice (⊂ sentence planning):
‣ encode with lexical ambiguity and semantic content

female

N:x

N *

NP:x

the N:x

chicken

NP:x

the N:x

hen

{chicken(x)} {female(x)} {chicken(x), female(x)}



SPUD captures SR + SP

• Aggregation (sometimes ⊂ sentence planning):
‣ encode with lexical ambiguity and semantic content

‣ aggregated and non-aggregated version are equally allowed

female

N:x

N *

S

NP:x ! VP

is

Aux NP:x

a N:x

chicken

S

NP:x ! VP

is

Aux Adj:x

female

“Polly is a chicken 
  and Polly is female”

“Polly is a female chicken.”

S

S !
and

S *



Summary

• Separation of sentence generation into 
sentence planning and realization is 
somewhat artificial and dangerous.

• SPUD: Perform SP and SR in one step by
‣ adding semantic + pragmatic info to TAG e-trees

‣ performing greedy search for derivation based on 
syntactic, semantic, and pragmatic information


