SPUD: Integrierte
Satzplanung & Realisierung

Proseminar “Generierung”

Alexander Koller
21.Januar 201 |

The NLG pipeline

® Most generation systems go through the
“pipeline” sequentially:

» text planning = sentence planning — surface realization

® |n terms of “goals” and “choices’: Make all
choices of a certain type first.

® What is sentence planning?

» somewhat artificial concept

Tasks vs. pipeline stages

AlthGen
Ana
CGS
Drafter
Drafter2
Exclass
FoG
GhostWriter
Gist

Gossip
HealthDoc
Joyce
Komet

LFS
ModEx

Pat Claim
PlanDoc
PostGraphe
Proverb

Reiter/Dale

Lex

Agg

“n

Sal

Grammar in RE generation

Grammar in RE generation

the bricklayer
Y / 4

Grammar in RE generation

the Englishman

Grammar in RE generation

NOUN

the

Grammar in RE generation

the | ADJECTIVE | astronomer

.
.
wus®

»
"
s wen®
"rasamsammanunnettt

Grammar in RE generation
the French astronomer J

Grammar in RE generation

the | ADJECTIVE | Frenchman

Grammar in RE generation

the ?7?7? Frenchman

RE generation vs. realization

the bricklayer and the doctor
bricklayer U doctor

?

the non-Europeans

- european

Interacting REs

® Referring expressions can constrain each
other:

/

What do you call
this guy!?

Lessons from the example

® Referring expressions generation

» is typically subsumed under sentence planning
» requires access to grammatical resources

» but theoretically, only realizer should see grammar

® RE that looks good to sentence planner
might be bad or impossible for realizer.

® How to keep SP and SR resources
synchronized!?

Today

® Separation between sentence planning and
surface realization is artificial.

® Tree-Adjoining Grammars (TAG).

® SPUD: Integrated sentence planning and
surface realization based on TAG.

Tree-adjoining grammars

® | exicalized grammar formalism, invented by
Aravind Joshi.

® |dea: Build syntactic derivation by
combining elementary trees by substitution
and adjunction.

® (Goes beyond context-free expressive
power.

A grammar, part |

TAG

elementary

substitution

VP

loves

trees ~__

Substitution

® Elementary trees can be combined by
substituting a substitution node with
another elementary tree:

NP VP

Mary Vv NP

loves o N

e rabbits

rabbits

Grammar, Part 2

: A
white N *

NP |

|
elementary trees like these because they have
are called auxiliary trees foot nodes

Adjunction

® Auxiliary trees can be adjoined into nodes
of other elementary trees.

N\

*) passionately
4

4

NP

Mary passionately

NP e rabbits
N

rabbits

Derivation trees

® Record the structure of a TAG derivation in
a derivation tree:

1
: I ,
- VP : A \ :
P -] \ :
// * /\ passionately ! 2 3 ® 4 !
! 1

NP

The combination of the
elementary trees is called
the derived tree: —

Mary passionately

- TV NP

N

rabbits

Lexical ambiguity in TAG

® Words in TAG highly ambiguous because e-
trees contain so much grammatical contexct:

TAG: Summary

® Spell out grammatical use of each word in
an elementary tree (“‘extended domain of
locality™).

® Two-sided adjunction makes TAG more
expressive than context-free grammars.

® “Mildly context-sensitive” grammar
formalism; can be parsed in time O(n®).

TAG in generation

® NLG is about goals and choices.

® |n TAG: choice = selection of e-tree to add
to the current derivation, top-down.

VP *) passionately

rabbits

SPUD

® SPUD (Matthew Stone, late 90s):

» equip e-trees with semantic and pragmatic information

» use this information to drive top-down TAG
generation

» heuristic search for a complete derivation

® This solves (some) sentence planning and
realization at the same time.

® Different versions: Stone & Doran,ACL 98;
Stone et al.,, Computational Intelligence 03.

SPUD: Lexicon entries

semantic indices

sem. cont.: {name(x,Mary)}

! NP:x , |
o I sem. cond.: nothing :
NRE 3 : E Mary prag. cond.: nothing :
o NPxa sem.cont.: {rabbit(x)}
the Nx sem. cond.: nothing

prag. cond.: {unique-id(x),

semantic content: {loves(x,y,z)} discourse-old(x)}

semantic condition: {animate(y)} sem. cont.: {white(x)}

: 1
, 1
: N:x |
! /\ sem. cond.: nothing :
' white N * :
| :
1

pragmatic condition: nothing
prag. cond.: nothing

Combining tree instances

substitution: {e/x|, m/y|, m/xz, a/z|, a/x3, a/X4}

SPUD: Knowledge base

Semantic information: 2 g b ol

N
—<s

{loves(e,m,a), name(m,Mary), rabbit(a), rabbit(b),
white(a), brown(b), ...}

Pragmatic information:

{discourse-new(a), unique-id(a), ...}

Communicative goal: {communicate “loves(e,m,a)”}
Root node specification: generate an S:e

The SPUD search algorithm

® States consist of:

4

list of unsatisfied communicative goals

» TAG derivation tree

» substitution for semantic indices

4

“constraint network” to keep track of REs

® |nitial state:

4
4

initial communicative goal

empty derivation, starting with an open substitution
node according to the root node specification

empty substitution

The SPUD search algorithm

® Search step:

» choose a new elementary tree from the lexicon
» choose a substitution for the indices of this tree

» if tree instance can be added to the derivation and the
semantic and pragmatic conditions are satisfied, then
add it to the derivation and update search state

® Repeat this step until in a goal state, i.e.:

» all communicative goals expressed
» derivation is grammatically complete

» all REs are unique

The search heuristic

® |n each step, select the single e-tree that is
best according to the following criteria:

4
4
4
4
4

contribution to communicative goals

ambiguity of referring expressions

salience of individuals that are selected for indices
number of remaining flaws in syntactic derivation

specificity of semantic content

® SPUD uses a greedy search strategy:
It never backtracks.

An example

a . b o

KB: - . . loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)

CG: loves(e,m,a) Root: S:e distractors:
S:eJ,o/

substitution: {}

An example

a b
KB: - . . loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)
CG: Ioves(e,m,a)~/ Root: S:e distractors: Yi:{a,b,e}
zi:{m,b,e}
S:eJ,oY\
SXq a-

NPy4 | VP:x4

NP:z1 !

loves

semantic content: {loves(e,m,a)}

pragmatic condition: nothing

substitution: {&/x|, m/y|, a/z}

An example

2o b
KB: © . @ loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)
CG: Ioves(e,m,a)~/ Root: S:e distractors: Yi:{mbgap

z1: {m,b,e}

Se | o

NP:z1 !

sem. cont.: {name(m,Mary)}
prag. cond.: nothing

substitution: {e/x|, m/yi, a/z|}m/x2}

An example

a . b
KB: © . @ loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)
CG: Ioves(e,m,a)~/ Root: S:e distractors: Yi:unique

z1:{b},b,e}

Se | o

F%x3“
htxs
rabbit

prag. cond.: {unique-id(a), discourse-new(a)}

sem. cont.: {rabbit(a)}

substitution: {e/x|, m/yi, a/z|, m/x2}a/x3}

An example

a b !

KB: < . L% loves(e,m,a), name(m,Mary), d-new(a), unique-id(a)

CG: Ioves(e,m,a)~/ Root: S:e distractors: Yi:unique
. z|: {lmique
:e\l,o‘r\

sem. cont.: {white(x)}

| prag. cond.: nothing

substitution: {e/x|, m/yi, a/z|, mix, alixs} a/x4}

SPUD captures SR + SP

® Surface realization:
» derivation is grammatical according to TAG grammar

» semantic content subsumes communicative goal

» semantic content of sentence is supported by the
knowledge base

® Very “semantic’ approach to surface
realization: Input consists of semantic
representations, not abstract syntax
specifications.

SPUD captures SR + SP

® Referring expressions (C sentence planning):

» definite descriptions are required to be unique

® |ntegration with realization

» avoids problems mentioned in the introduction

Interacting REs

® Use semantic conditions to generate very
succinct referring expressions:

» “Take the rabbit from the hat”

S:x
sem. cont.: {take(x,y,z)}

_ NP:y | PP:
TV:x ‘ sem.cond.: {in(y,z)}

take from NP:z |

SPUD captures SR + SP

® | exical choice (c sentence planning):

» encode with lexical ambiguity and semantic content

NP:x A(NP:x
the /\ N :x female N * the /\ N:x
chicken hen

{chicken(x)} {female(x)} {chicken(x), female(x)}

SPUD captures SR + SP

® Aggregation (sometimes C sentence planning):

» encode with lexical ambiguity and semantic content

» aggregated and non-aggregated version are equally allowed

S
o ,/I\S¢ . “Polly is a chicken

° b
/ NP L .~ and Polly is female
NP:x | VP Aux Adj:x

iS female

N:x

chicken

female N *

“Polly is a female chicken.”

Summary

® Separation of sentence generation into
sentence planning and realization is
somewhat artificial and dangerous.

® SPUD: Perform SP and SR in one step by

» adding semantic + pragmatic info to TAG e-trees

» performing greedy search for derivation based on
syntactic, semantic, and pragmatic information

