Übungsblatt 7: Kontextfreie Sprachen

1. Sei $G = (V, \Sigma, R, S)$, wobei $V = \{S, A, B, a, b\}$, $\Sigma = \{a, b\}$ und

```
R = \{ S \rightarrow aB, \\ S \rightarrow bA, \\ A \rightarrow a, \\ A \rightarrow aS, \\ A \rightarrow bAA, \\ B \rightarrow b, \\ B \rightarrow bS, \\ B \rightarrow aBB \}
```

a) Beweisen Sie: Wenn $w \in V^*$ und $S \Rightarrow w$, dann ist #a in w + #A in w = #b in w + #B in w (#a , #a).

Hinweis: Induktion über die Ableitungslänge

b) a) zeigt uns, dass $L(G) \subseteq \{ w \in \Sigma^+ : \#a \text{ in } w = \#b \text{ in } w \}$. Zeigen Sie jetzt, dass $L(G) = \{ w \in \Sigma^+ : \#a \text{ in } w = \#b \text{ in } w \}$.

Hinweis: Zeigen Sie durch Induktion über die Wortlänge, dass:

Wenn $w \in \{ w \in \Sigma^+ : \#a \text{ in } w = \#b \text{ in } w \}, \text{ dann } w \in L(G).$

2. Beweisen Sie die folgende starke Version des Pumping-Lemmas für kontextfreie Sprachen:

Sei G eine kontextfreie Grammatik. Dann gibt es Zahlen K und k, so dass für jede Zeichenkette $w \in L(G)$ mit |w| > K folgendes gilt: Es gibt Wörter u, v, x, y, $z \in \Sigma^*$ so dass:

- 1) w = uvxyz
- 2) mindestens eine von v und y ist nicht ε
- 3) Für alle $n \ge 0$: $uv^n x y^n z \in L$
- 4) $|vxy| \le k$

Hinweis: Die zusätzliche Bedingung 4) lässt sich durch genaue Betrachtung des Beweises der ursprünglichen Version des Lemmas ableiten.

3. Wenden Sie 2) an, um zu beweisen, dass

$$COPY = \{ ww : w \in \{a, b\}^* \}$$

nicht kontextfrei ist.