
Logical Grammar: Introduction to Typed
Lambda Calculus

Carl Pollard

Department of Linguistics
Ohio State University

July 6, 2011

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Typed Lambda Calculi: Background

Developed starting with Church and Curry in 1930’s
Can be viewed model-theoretically (Henkin-Montague
perspective) or proof-theoretically (Curry-Howard
perspective). For now we focus on the former.
Underlies higher-order logic (HOL) and functional
programming. Widely used in semantics for formalizing
theories of meaning (and in LG for formalizing
phenogrammar).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



What’s in a TLC

A TLC is specified by giving its types, its terms, and an
equivalence relation on the terms.
There are different kinds of TLCs, depending on what kind
of propositional logic its type system is based on.
The TLC that underlies HOL, called positive TLC, is based
on positive intuitionistic propositional logic (PIPL), which
lacks false, negation and disjunction.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Types of Positive TLC

1. There are some basic types. For concreteness, here we
assume two basic types motivated by NL semantics:

p (for propositions, the kind of meanings expressed by
utterances of declarative sentences)
e (for entities, the kind of things that can be meanings
of names (just for now assuming a direct reference
theory of names))

2. T is a type.

3. If A and B are types, so is A ∧B.

4. If A and B are types, so is A→ B.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Terms of Positive TLC (1/2)

Note: we write ‘` a : A’ to mean term a is of type A.

a. There are some nonlogical constants. In the typical
appplication to NL semantics, these are interpreted as
word meanings, e.g.:

` fido : e
` bark : e→ p
` bite : e→ e→ p
` give : e→ e→ e→ p
` believe : e→ p→ p

b. There is a logical constant ` ∗ : T. In the application to NL
semantics, this is interpreted as the vacuous meaning.

c. For each type A there are variables ` xAi : A (i ∈ ω).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Terms of Positive TLC (2/2)

d. If ` a : A and ` b : B, then ` (a, b) : A ∧B.
e. If ` a : A ∧B, then ` π(a) : A.
f. If ` a : A ∧B, then ` π′(a) : B.
g. If ` f : A→ B and ` a : A, then ` app(f, a) : B.
h. If ` x : A is a variable and ` b : B, then ` λx.b : A→ B.

Note: app(f, a) is usually abbreviated to (f a).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Positive TLC Term Equivalences (1/2)

Here t, a, b, p, and f are metavariables ranging over terms.

a. Equivalences for the term constructors:

1. t ≡ ∗ (for t a term of type T)

2. π(a, b) ≡ a
3. π′(a, b) ≡ b
4. (π(p), π′(p)) ≡ p

b. Equivalences for the variable binder (‘lambda conversion’)
(α) λx.b ≡ λy.[y/x]b
(β) (λx.b) a ≡ [a/x]b
(η) λx.(f x) ≡ f , provided x is not free in f

Note: The notation ‘[a/x]b’ means the term resulting from
substitution in b of all free occurrences of x : A by a : A.
This presupposes no free variable occurences in a become
bound as a result of the substitution.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Positive TLC Term Equivalences (2/2)

c. Equivalences of Equational Reasoning

(ρ) a ≡ a
(σ) If a ≡ a′, then a′ ≡ a.
(τ) If a ≡ a′ and a′ ≡ a′′, then a ≡ a′′.
(ξ) If b ≡ b′, then λx.b ≡ λx.b

′.
(µ) If f ≡ f ′ and a ≡ a′, then (f a) ≡ (f ′ a′).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



The Henkin-Montague Perspective

A (set-theoretic) interpretation I of a positive TLC assigns
to each type A a set I(A) and to each constant ` a : A a
member I(a) of I(A), subject to the following constraints:

1. I(T) is a singleton

2. I(A ∧B) = I(A)× I(B)

3. I(A→ B) ⊆ I(A)→ I(B)

Note: As in Henkin 1950, the set inclusion in the last clause (3)
can be proper, as long as there are enough functions to
interpret all functional terms.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Assignments

An assignment relative to an interpretation is a function that
maps each member of a set of variables to a member of the set
that interprets the variable’s type.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Extending an Interpretation Relative to an Assignment

Given an assignment α relative to an interpretation I, there is a
unique extension of I, denoted by Iα, that assigns
interpretations to all terms, such that:

1. for each variable x, Iα(x) = α(x)

2. for each constant a, Iα(a) = I(a)

3. if ` a : A and ` b : B, then Iα((a, b)) is 〈Iα(a), Iα(b)〉
4. if ` p : A ∧B, then Iα(π(p)) is the first component (=

projection onto I(A)) of Iα(p); and Iα(π′(p)) is the second
component (= projection onto I(B)) of Iα(p)

5. if ` f : A→ B and ` a : A, then Iα((f a)) = (Iα(f))(Iα(a))

6. if ` b : B, then Iα(λx∈A.b) is the function from I(A) to I(B)
that maps each s ∈ I(A) to Iβ(b), where β is the assignment
that coincides with α except that β(x) = s.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Observations about Interpretations

Two terms ` a : A and ` b : B of positive TLC are
term-equivalent iff A = B and, for any intepretation I and
any assignment α relative to I, Iα(a) = Iα(b).
Another way of stating the preceding is to say that term
equivalence (viewed as an equational proof system) is
sound and complete for the class of set-theoretic
interpretations described earlier.
For any term a, Iα(a) depends only on the restriction of α
to the free variables of a.
In particular, if a is a closed (i.e. has no free variables),
then Iα(a) is independent of α so we can simply write I(a).
Thus, an interpretation for the basic types and constants
extends uniquely to all types and all closed terms.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Sequent-Style ND with Proof Terms

We review a style of ND equipped to analyze not just
provability, but also proofs.
We illustrate how this works for PIPL, starting from the
(term-free) sequent-style ND for PIPL already introduced.
We’ll see that in addition to (or at the same time as) being
thought of as denoting elements of models, TLC terms can
also be thought of as notations for proofs.
This idea was first articulated by Curry (1934, 1958), then
elaborated by Howard (1969 [1980]), Tait (1967), etc..
Soon, we’ll use this kind of ND for phenos and meanings in
linguistic derivations.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Preliminary Definitions

1. A (TLC) term is called closed if it has no free variables.
2. A closed term is called a combinator if it contains no

nonlogical constants.
3. A type is said to be inhabited if there is a closed term of

that type.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Curry-Howard Correspondence (1/2)

Types are (the same thing as) formulas.
Type constructors are logical connectives.
(Equivalence classes of) terms are proofs.
The free variables of a term are the undischarged
hypotheses on which the proof depends.
The nonlogical constants of a term are the nonlogical
axioms used in the proof.
A type is a theorem iff it is inhabited.
A type is a pure theorem (requires no nonlogical axioms to
prove it) iff it is inhabited by a combinator.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Curry-Howard Correspondence (2/2)

Application corresponds to Modus Ponens.
Abstraction corresponds to Hypothetical Proof (discharge
of hypothesis).
Pairing corresponds to Conjunction Introduction.
Projections correspond to Conjunction Eliminations.
Identification of free variables corresponds to collapsing of
duplicate hypotheses (Contraction).
Vacuous abstraction corresponds to discharge of a
nonexistent hypothesis (Weakening).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Notation for Sequent-Style ND with Proof Terms

Judgments are of the form Γ ` a : A, read ‘a is a proof of A
with hypotheses Γ’, where

1. A is a formula (= type)
2. a is a term (= proof)
3. Γ, the context of the judgment, is a set of variable/formula

pairs of the form x : A, with a distinct variable in each pair.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Axiom Schemas

Hypotheses:

x : A ` x : A

(x a variable of type A)

Nonlogical Axioms:

` a : A

(a a nonlogical constant of type A)

Logical Axiom:

` ∗ : T

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Rule Schemas for Implication

→-Elimination or Modus Ponens:

Γ ` f : A→ B ∆ ` a : A
→EΓ,∆ ` (f a) : B

This presupposes no variable occurs in both Γ and ∆.

→-Introduction or Hypothetical Proof:

x : A,Γ ` b : B
→IΓ ` λx.b : A→ B

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus



Other Rule Schemas

There are also rules schemas (which we will not need) for:

pairing/conjunction introduction
projections/conjunction elimination
identifying variables/contraction
useless hypotheses/weakening

For details see e.g. John C. Mitchell and Philip J. Scott (1989)
“Typed lambda models and cartesian closed categories”,
Contemporary Mathematics 92:301-316.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Calculus


