Logical Grammar: Introduction to Typed
Lambda Calculus

Carl Pollard

Department of Linguistics
Ohio State University

July 6, 2011

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Typed Lambda Calculi: Background

m Developed starting with Church and Curry in 1930’s

m Can be viewed model-theoretically (Henkin-Montague
perspective) or proof-theoretically (Curry-Howard
perspective). For now we focus on the former.

m Underlies higher-order logic (HOL) and functional
programming. Widely used in semantics for formalizing
theories of meaning (and in LG for formalizing
phenogrammar).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



What’s in a TLC

m A TLC is specified by giving its types, its terms, and an
equivalence relation on the terms.

m There are different kinds of TLCs, depending on what kind
of propositional logic its type system is based on.

m The TLC that underlies HOL, called positive TLC, is based
on positive intuitionistic propositional logic (PIPL), which
lacks false, negation and disjunction.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Types of Positive TLC

1. There are some basic types. For concreteness, here we
assume two basic types motivated by NL semantics:

p (for propositions, the kind of meanings expressed by
utterances of declarative sentences)
e (for entities, the kind of things that can be meanings
of names (just for now assuming a direct reference
theory of names))

2. T is a type.

3. If A and B are types, so is A A B.

4. If A and B are types, sois A — B.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Terms of Positive TLC (1/2)

Note: we write ‘t a : A’ to mean term a is of type A.

a.

There are some nonlogical constants. In the typical
appplication to NL semantics, these are interpreted as
word meanings, e.g.:

- fido : e

Fbark:e —p

Fbite:e —e—p

Fgive:re we—e—p

F believe:e - p —p

. There is a logical constant = * : T. In the application to NL

semantics, this is interpreted as the vacuous meaning.

For each type A there are variables F 2 : A (i € w).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Terms of Positive TLC (2/2)

d. If Fa: Aand - b: B, then - (a,b) : AN B.
Ift-a:AAB, then F w(a): A.

f. IfFa: AN B, then - 7'(a) : B.

If-f:A— BandtFa: A, then - app(f,a): B.

If -x: Ais avariable and - b: B, then - A\,.b: A — B.

®

P

Note: app(f,a) is usually abbreviated to (f a).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Positive TLC Term Equivalences (1/2)

Here t,a,b,p, and f are metavariables ranging over terms.

a. Equivalences for the term constructors:

1. t = x (for ¢ a term of type T)
2. m(a,b)=a
3. 7(a,b)=b

4. (m(p),'(p)) =p

b. Equivalences for the variable binder (‘lambda conversion’)
(@) Ap.b=Ay.Jy/x]b
(B) (Ag.b) a=[a/x]b
(n) Ae.(f ) = f, provided z is not free in f
Note: The notation ‘[a/z]b’ means the term resulting from
substitution in b of all free occurrences of = : A by a : A.
This presupposes no free variable occurences in a become
bound as a result of the substitution.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Positive TLC Term Equivalences (2/2)

c. Equivalences of Equational Reasoning

(p) a=a

(o) If a =d’, then d’ = a.

(1) If a=d’ and @’ = d”, then a = a”.

(€) IEb =V, then Ap.b = A,.b.

(u) If f=f" and a = d/, then (f a) = (f' o).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



The Henkin-Montague Perspective

A (set-theoretic) interpretation I of a positive TLC assigns
to each type A a set I(A) and to each constant -a: A a
member [(a) of I(A), subject to the following constraints:

1. I(T) is a singleton

2. I(AANB)=1I(A) x I(B)

3. I(A— B)CI(A) — I(B)

Note: As in Henkin 1950, the set inclusion in the last clause (3)

can be proper, as long as there are enough functions to
interpret all functional terms.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Assignments

An assignment relative to an interpretation is a function that
maps each member of a set of variables to a member of the set
that interprets the variable’s type.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Extending an Interpretation Relative to an Assignment

Given an assignment « relative to an interpretation I, there is a
unique extension of I, denoted by I, that assigns
interpretations to all terms, such that:

1. for each variable z, I,(z) =
2. for each constant a, I,(a) =
3.

4. if Fp: AA B, then I,(m(p)) is the first component (=

a(z)
I(a)
ifa:AandbFb: B, then I,((a,b)) is (In(a), I,(D))

projection onto I(A)) of I,(p); and I, (7' (p)) is the second
component (= projection onto I(B)) of I,(p)

5. ifFf:A— Bandta: A, then I,((f a)) = (Io(f))(Ia(a))
6. if-b: B, then I,(Azea.b) is the function from I(A) to I(B)

that maps each s € I(A) to Ig(b), where 3 is the assignment
that coincides with « except that 8(x) =

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Observations about Interpretations

m Two terms Fa: A and F b : B of positive TLC are
term-equivalent iff A = B and, for any intepretation I and
any assignment « relative to I, I (a) = I,(b).

m Another way of stating the preceding is to say that term
equivalence (viewed as an equational proof system) is
sound and complete for the class of set-theoretic
interpretations described earlier.

m For any term a, I,(a) depends only on the restriction of «
to the free variables of a.

m In particular, if a is a closed (i.e. has no free variables),
then I, (a) is independent of a so we can simply write I(a).

m Thus, an interpretation for the basic types and constants
extends uniquely to all types and all closed terms.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Sequent-Style ND with Proof Terms

m We review a style of ND equipped to analyze not just
provability, but also proofs.

m We illustrate how this works for PIPL, starting from the
(term-free) sequent-style ND for PIPL already introduced.

m We'll see that in addition to (or at the same time as) being
thought of as denoting elements of models, TLC terms can
also be thought of as notations for proofs.

m This idea was first articulated by Curry (1934, 1958), then
elaborated by Howard (1969 [1980]), Tait (1967), etc..

m Soon, we’ll use this kind of ND for phenos and meanings in
linguistic derivations.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Preliminary Definitions

1. A (TLC) term is called closed if it has no free variables.

2. A closed term is called a combinator if it contains no
nonlogical constants.

3. A type is said to be inhabited if there is a closed term of
that type.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Curry-Howard Correspondence (1/2)

Types are (the same thing as) formulas.

Type constructors are logical connectives.

(Equivalence classes of) terms are proofs.

m The free variables of a term are the undischarged
hypotheses on which the proof depends.

The nonlogical constants of a term are the nonlogical
axioms used in the proof.

A type is a theorem iff it is inhabited.

A type is a pure theorem (requires no nonlogical axioms to
prove it) iff it is inhabited by a combinator.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Curry-Howard Correspondence (2/2)

Application corresponds to Modus Ponens.

m Abstraction corresponds to Hypothetical Proof (discharge
of hypothesis).

m Pairing corresponds to Conjunction Introduction.
m Projections correspond to Conjunction Eliminations.

m Identification of free variables corresponds to collapsing of
duplicate hypotheses (Contraction).

m Vacuous abstraction corresponds to discharge of a
nonexistent hypothesis (Weakening).

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Notation for Sequent-Style ND with Proof Terms

Judgments are of the form I' - a : A, read ‘a is a proof of A
with hypotheses I'’, where

1. Ais a formula (= type)

2. a is a term (= proof)

3. I, the context of the judgment, is a set of variable/formula
pairs of the form z : A, with a distinct variable in each pair.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Axiom Schemas

Hypotheses:
x:AFz: A
(z a variable of type A)
Nonlogical Axioms:
Fa:A
(a a nonlogical constant of type A)

Logical Axiom:

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Rule Schemas for Implication

—-Elimination or Modus Ponens:

'-f:A— B AFa:A
AR (fa):B

—

This presupposes no variable occurs in both I' and A.

—-Introduction or Hypothetical Proof:

r:AT'Fb: B
'EXb:A— B

—I

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



Other Rule Schemas

There are also rules schemas (which we will not need) for:

pairing/conjunction introduction

projections/conjunction elimination

identifying variables/contraction

useless hypotheses/weakening

For details see e.g. John C. Mitchell and Philip J. Scott (1989)
“Typed lambda models and cartesian closed categories”,
Contemporary Mathematics 92:301-316.

Carl Pollard Logical Grammar: Introduction to Typed Lambda Ca



