
Introduction to Typed Lambda Calculus

Carl Pollard
The Ohio State University

July 5, 2011

(1) Typed Lambda Calculi (TLCs)

• Developed starting with Church and Curry in 1930’s

• Can be viewed model-theoretically (Henkin-Montague per-
spective) or proof-theoretically (Curry-Howard perspective).
For now we focus on the former.

• Underlies higher-order logic (HOL), widely used in seman-
tics for formalizing theories of meaning (and in LG for for-
malizing phenogrammar).

• A TLC is specified by giving its types, its terms, and an
equivalence relation on the terms.

• There are different kinds of TLCs, depending on what kind
of propositional logic its type system is based on.

• The TLC that underlies HOL, called positive TLC, is based
on positive intuitionistic propositional logic (PIPL), which
lacks false, negation and disjunction.

(2) Types of Positive TLC

a. There are some basic types. For concreteness, in this hand-
out we use two basic types motivated by NL semantics:

p (for propositions, the kind of meanings expressed by
utterances of declarative sentences)

e (for entities, the kind of things that can be meanings of
names (just for now assuming a direct reference theory
of names)

1



b. T is a type;

c. if A and B are types, so is A ∧B; and

d. if A and B are types, so is A→ B.

(3) Terms of Positive TLC

Note: we write ‘` a : A’ to mean term a is of type A.

a. There are some nonlogical constants. In the typical app-
plication to NL semantics, these are interpreted as word
meanings, e.g.:

` fido : e

` bark : e→ p

` bite : (e ∧ e)→ p

` give : (e ∧ e ∧ e)→ p

` believe : (e ∧ p)→ p

b. There is a logical constant ` ∗ : T. In the application to NL
semantics, this is interpreted as the vacuous meaning.

c. For each type A there are variables ` xAi : A (i ∈ ω)

d. If ` a : A and ` b : B, then ` (a, b) : A ∧B;

e. If ` a : A ∧B, then ` π(a) : A;

f. If ` a : A ∧B, then ` π′(a) : B;

g. If ` f : A→ B and ` a : A, then ` app(f, a) : B;1

h. If ` x : A is a variable and ` b : B, then ` λx.b : A→ B.

(4) Positive TLC Term Equivalences

Here t, a, b, p, and f are metavariables ranging over terms.

a. Equivalences for the term constructors:

i. t ≡ ∗ (for t a term of type T);

ii. π(a, b) ≡ a;

iii. π′(a, b) ≡ b; and

iv. (π(p), π′(p)) ≡ p

1app(f, a) is usually abbreviated to (f a).

2



b. Equivalences for the variable binder (‘lambda conversion’)2

(α) λx.b ≡ λy.[y/x]b;

(β) (λx.b a) ≡ [a/x]b; and

(η) λx.(f x) ≡ f , provided x is not free in f .

c. Equivalences of Equational Reasoning

(ρ) a ≡ a

(σ) If a ≡ a′, then a′ ≡ a.

(τ) If a ≡ a′ and a′ ≡ a′′, then a ≡ a′′.

(ξ) If b ≡ b′, then λx.b ≡ λx.b
′.

(µ) If f ≡ f ′ and a ≡ a′, then (f a) ≡ (f ′ a′).

(5) The Henkin-Montague Perspective

A (set-theoretic) interpretation I of a positive TLC assigns
to to each type A a set I(A) and to each constant ` a : A a
member I(a) of I(A), subject to the following constraints:

a. I(T) is a singleton;

b. I(A ∧B) = I(A)× I(B);

c. I(A→ B) ⊆ I(A)→ I(B).3

(6) Assignments
An assignment relative to an interpretation is a function that
maps each member of a set of variables to a member of the set
that interprets the variable’s type.

(7) Extending an Interpretation Relative to an Assignment

Given an assignment α relative to an interpretation I, there is
a unique extension of I, denoted by Iα, that assigns interpreta-
tions to all terms, such that:

a. For each variable x, Iα(x) = α(x);

b. for each constant a, Iα(a) = I(a);

c. if ` a : A and ` b : B, then Iα((a, b)) is 〈Iα(a), Iα(b)〉;
2The notation ‘[a/x]b’ means the term resulting from substituition in b of all free

occurrences of x : A by a : A. This presupposes no free variable occurences in a become
bound as a result of the substitution.

3As in Henkin 1950, the set inclusion in clause (3) can be proper, as long as there are
enough functions to interpret all functional terms.

3



d. if ` p : A ∧ B, then Iα(π(p)) is the first component (=
projection onto I(A)) of Iα(p); and Iα(π′(p)) is the second
component (= projection onto I(B)) of Iα(p);

e. if ` f : A→ B and ` a : A, then Iα((f a)) = (Iα(f))(Iα(a));
and

f. if ` b : B, then Iα(λx∈A.b) is the function from I(A) to I(B)
that maps each s ∈ I(A) to Iβ(b), where β is the assignment
that coincides with α except that β(x) = s.

(8) Observations about Interpretations

• Two terms ` a : A and ` b : B of positive TLC are term-
equivalent iff A = B and, for any intepretation I and any
assignment α relative to I, Iα(a) = Iα(b).

• Another way of stating the preceding is to say that term
equivalence (viewed as an equational proof system) is sound
and complete for the class of interpretations described in
(5-7).

• For any term a, Iα(a) depends only on the restriction of α
to the free variables of a.

• In particular, if a is a closed (i.e. has no free variables),
then Iα(a) is independent of α so we can simply write I(a).

• Thus, an interpretation for the basic types and constants
extends uniquely to all types and all closed terms.

(9) Sequent-Style ND with Proof Terms

• We review a style of ND equipped to analyze not just prov-
ability, but also proofs.

• We illustrate how this works for PIPL, starting from the
(term-free) sequent-style ND for PIPL already introduced.

• We’ll see that in addition to (or at the same time as) being
thought of as denoting elements of models, TLC terms can
also be thought of as notations for proofs.

• This idea was first articulated by Curry (1934, 1958), then
elaborated by Howard (1969 [1980]), Tait (1967), etc..

• Soon, we’ll use this kind of ND for phenos and meanings in
linguistic derivations.

4



(10) Preliminary Definitions

1. a (TLC) term is called closed if it has no free variables;

2. a closed term is called a combinator if it contains no non-
logical constants;

3. a type is said to be inhabited if there is a closed term of
that type.

(11) Curry-Howard Correspondence (1/2)

• Types are (the same thing as) formulas.

• Type constructors are logical connectives.

• (Equivalence classes of) terms are proofs.

• The free variables of a term are the undischarged hypothe-
ses on which the proof depends.

• The nonlogical constants of a term are the nonlogical ax-
ioms used in the proof.

• A type A is a theorem iff it is inhabited.

• A type is a pure theorem (requires no nonlogical axioms to
prove it) iff it is inhabited by a combinator.

(12) Curry-Howard Correspondence (2/2)

• Application corresponds to modus ponens.

• Abstraction corresponds to hypothetical proof (discharge
of hypothesis).

• Pairing corresponds to conjunction introduction.

• Projections correspond to conjunction eliminations.

• Identification of free variables corresponds to collapsing of
duplicate hypotheses (contraction).

• Vacuous abstraction corresponds to discharge of a nonexis-
tent hypothesis (weakening).

5



(13) Notation for Sequent-Style ND with Proof Terms

Judgments are of the form Γ ` a : A, read ‘a is a proof of A
with hypotheses Γ’, where

1. A is a formula (= type)

2. a is a term (= proof)

3. Γ, the context of the judgment, is a set of variable/formula
pairs of the form x : A, with a distinct variable in each pair.

(14) Axiom Schemas

Hypotheses:

x : A ` x : A

(x a variable of type A)

Nonlogical Axioms:

` a : A

(a a nonlogical constant of type A)

Logical Axiom:

` ∗ : T

(15) Rule Schemas for Implication

→-Elimination or Modus Ponens:

Γ ` f : A→ B ∆ ` a : A
→E

Γ,∆ ` (f a) : B

This presupposes no variable occurs in both Γ and ∆.

→-Introduction or Hypothetical Proof:

x : A,Γ ` b : B
→I

Γ ` λx.b : A→ B

6



(16) Other Rule Schemas
There are also rules schemas (which we will not need) for:

• pairing/conjunction introduction

• projections/conjunction elimination

• identifying variables/contraction

• useless hypotheses/weakening

For details see e.g. John C. Mitchell and Philip J. Scott (1989)
“Typed lambda models and cartesian closed categories”, Con-
temporary Mathematics 92:301-316.

7


