
Logical Grammar: Proof-Theoretic
Background

Carl Pollard

Department of Linguistics
Ohio State University

July 4, 2011

Carl Pollard Logical Grammar: Proof-Theoretic Background

Our Technical Tools

To do linear grammar, we will make use of several different
logical systems:

linear logic
positive intuitionistic intuitionistic logic
typed lambda calculus
type theory/higher order logic

To explain these, we start by introducing a kind of proof
theory called sequent-style natural deduction, or just ND
for short.

Carl Pollard Logical Grammar: Proof-Theoretic Background

What is Proof Theory?

Proof theory is the part of logic concerned with purely
syntactic methods for determining whether a formula is
deducible from a collection of formulas.
what counts as a ‘formula’ varies from one proof theory to
the next. Usually (as in the proof theory we will use) they
are certain strings of symbols.
Here ‘syntactic’ means that we are only concerned with the
form of the formulas and not their semantic interpretation.
(The part of logic that worries about that is model
theory).
What counts as a ‘collection’ also varies from one proof
theory to the next
In some proof theories, collections are taken to be sets; in
others, strings. In the proof theory we will be concerned
with, they will be taken to be finite multisets.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Finite Multisets

Roughly speaking, finite multisets are a sort of compromise
between strings and finite sets:

They are stringlike in the sense that repetitions matter.
But they are setlike in the sense that order does not
matter.

Technically, for any set S, a finite S-multiset is an
equivalence class of S-strings, where two strings count as
equivalent if they are permutations of each other.
Alternatively, we can think of a finite S-multiset as a
function from a finite subset of S to the positive natural
numbers.
So if we indicate multisets between square brackets, then
[A] is a different multiset from [A, A], but [A, B] and [B, A]
are the same multiset.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Formulas

To define a proof theory, we first need a recursively defined
set of formulas.
The base of the recursion specifies some basic formulas.
Then the recursion clauses tell how to get additional
formulas using connectives.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Example: Formulas in Linear Logic (LL)

In a simple LG of English, we might take the basic
formulas to be S, NP, and N.
The only recursion clause is: if A and B are formulas, so is
A (B.
The connective (is called linear implication
(informally called ‘lollipop’).
Soon we will see that (works much like the familiar
implication → of ordinary propositional logic, but with
more limited options.

Note: Actually, there are many linear logics. The one we
describe here, whose only connective is (, is implicative
intuitionistic linear propositional logic.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Two Notational Conventions for Formulas

We use upper-case italic roman letters as metavariables
ranging over formulas.
(associates to the right, e.g. A (B (C abbreviates
A ((B (C).

Carl Pollard Logical Grammar: Proof-Theoretic Background

Contexts

A finite multiset of formulas is called a context.
Careful: this is a distinct usage from the notion of context
as linguistically relevant features of the environment in
which an expression is uttered.
We use capital Greek letters (usually Γ or ∆) as
metavariables ranging over contexts.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Sequents

An ordered pair 〈Γ, A〉 of a context and a formula is called
a sequent.
Γ is called the context of the sequent and A is called the
statement of the sequent.
The formula occurences in the context of a sequent are
called its hypotheses or assumptions.

Carl Pollard Logical Grammar: Proof-Theoretic Background

What the Proof Theory Does

The proof theory recursively defines a set of sequents.
That is, it recursively defines a relation between contexts
and formulas.
The relation defined by the proof theory is called
deducibility, derivability, or provability, and is
denoted by ` (read ‘deduces’, ‘derives’, or ‘proves’).

Carl Pollard Logical Grammar: Proof-Theoretic Background

Sequent Terminology

The metalanguage assertion that 〈Γ, A〉 ∈ ` is usually
written Γ ` A.
Such an assertion is called a judgment.
The symbol ‘`’ that occurs between the context and the
statment of a judgment is called ‘turnstile’.
If Γ is the null multiset, we usually just write ` A.
If Γ is the singleton multiset with one occurrence of B, we
write B ` A.
Commas in the contexts of judgments represent multiset
union.
For example, if Γ = A, B and ∆ = B, then Γ, ∆ = A, B,B.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Proof Theory Terminology

The proof theory itself is a recursive definition.
The base clauses of the proof theory are called axioms,
and the recursion clauses are called (inference) rules.
Axioms are just certain judgments.
Rules are metalanguage conditional statements, whose
antecedents are conjunctions of judgments and whose
consequent is a judgment.
The judgments in the antecedent of a rule are called the
premisses of the rule, and the consequent is called the
conclusion of the rule.
Rules are notated by a horizontal line with the premisses
above and the conclusion below.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Axioms of (Pure) Linear Logic

The proof theory for (pure) linear logic has one schema of
axioms, and two schemas of rules.
The axiom schema, variously called Refl (Reflexive
Axioms), Hyp (Hypotheses), or simply Ax (Axioms) looks
like this:

A ` A

To call this an axiom schema is just to say that upon
replacing the metavariable A by any (not necessarily basic)
formula, we get an axiom, such as

NP ` NP

Note: In LG, hypothesis axioms will be used as (the tecto part
of) traces.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Rules of Linear Logic

Modus Ponens, also called (-Elimination:
Γ ` A (B ∆ ` A (EΓ, ∆ ` B

Hypothetical Proof, also called (-Introduction:
Γ, A ` B

(IΓ ` A (B

Notice that Modus Ponens eliminates the connective (,
in the sense that there is an occurrence of (in one of the
premisses (called the major premiss; the other premiss is
called the minor premiss).
Whereas, Hypothetical Proof introduces (, in the sense
that there is an occurrence of (in the conclusion but not
in the (single) premiss.
Pairs of rules that eliminate and introduce connectives are
characteristic of the natural-deduction style of proof theory.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Theorems of a Proof Theory

If in fact Γ ` A, then we call the sequent 〈Γ, A〉 a theorem
(in the present case, of linear logic).
It is not hard to see that Γ ` A if and only if there is a
proof tree whose root is labelled with the sequent 〈Γ, A〉.
Here, by a proof tree we mean an ordered tree whose nodes
are labelled by sequents, such that

the label of each leaf node is the sequent of an axiom; and
the label of each nonleaf node is the sequent of the
conclusion of a rule such that the sequents of the premisses
of the rule are the labels of the node’s daughters.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Proof Tree Notation

In displaying a proof tree, the root appears at the bottom
and the leaves at the top (so from a logician’s point of
view, linguist’s trees are upside down).
Even though technically the labels are sequents, we
conventionally write the corresponding judgments
(metalanguage assertions that the sequents are deducible).
Instead of edges connecting mothers to daughters as in
linguist’s trees, we write horizontal lines with the label of
the mother below and the labels of the daughters above
(just as in inference rules).
Sometimes as a mnemonic we label the horizontal line with
the name of the rule schema that was instantiated there.

Carl Pollard Logical Grammar: Proof-Theoretic Background

The Simplest Proof Tree

The simplest possible proof tree in linear logic has just one
leaf, which is also the root.
In this case the only option is for the node to be labelled
by a Hypothesis, e.g.:

NP ` NP

Intuitively, this can be thought of as: suppose you had an
NP; then, sure enough, you’d have an NP.
Don’t worry if this doesn’t seem to make any sense yet; it
will become clear what this means when we use an
elaborated form of Hypothesis (namely, trace) in a
linguistic analysis.

Carl Pollard Logical Grammar: Proof-Theoretic Background

A (Very) Slightly Less Trivial Proof Tree

NP ` NP (I` NP (NP

Carl Pollard Logical Grammar: Proof-Theoretic Background

Another Proof Tree (Type Raising

NP ` NP NP (S ` NP (S (ENP, NP (S ` S
(INP ` (NP (S) (S

(I` NP ((NP (S) (S

Note: Type Raising plays an important role in the analysis of
quantificational noun phrases, topicalization, focus
constructions, etc.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Positive Intuitionistic Propositional Logic (PIPL)

PIPL is like LL but with more connectives and rules.
The only connectives of PIPL are

The 0-ary connective T (read ‘true’), and
the two binary connectives → (intuitionistic implication)
and ∧ (conjunction).

By adding still more connectives and rules to PIPL (F
(false), ∨ (disjunction), and ¬ (negation)) we can get full
intutionistic propositional logic (IPL) and classical
propositional logic (CPL).
PIPL underlies the typed lambda calculus (TLC) and
higher order logic (HOL), which are used for notating both
pheno and semantics in LG.

Carl Pollard Logical Grammar: Proof-Theoretic Background

Axioms of (Pure) PIPL

Like LL, PIPL has the Hypothesis schema

A ` A

In addition, it has as the Truth axiom

` T

Carl Pollard Logical Grammar: Proof-Theoretic Background

Rules of PIPL

Introduction and elimination rules for implication
Introduction and elimination rules for conjunction
Two structural rules, Weakening and Contraction, which
affect only the contexts of sequents

Carl Pollard Logical Grammar: Proof-Theoretic Background

PIPL Rules for Implication

These are the same as for LL, but with (replaced by →:

Modus Ponens, also called →-Elimination:

Γ ` A → B ∆ ` A →EΓ, ∆ ` B

Hypothetical Proof, also called →-Introduction:

Γ, A ` B
→IΓ ` A → B

Carl Pollard Logical Grammar: Proof-Theoretic Background

PIPL Rules for Conjunction

The rules for conjunction include two elimination rules (for
eliminating the left and right conjunct respectively):

∧-Elimination 1:
Γ ` A ∧B ∧E1Γ ` A

∧-Elimination 2:
Γ ` A ∧B ∧E2Γ ` B

∧-Introduction:
Γ ` A ∆ ` B ∧IΓ, ∆ ` A ∧B

Carl Pollard Logical Grammar: Proof-Theoretic Background

PIPL Structural Rules

Weakening:

Γ ` A WΓ, B ` A

Intuitively: if we can prove something from certain
assumptions, we can also prove it with more assumptions.

Contraction:
Γ, B,B ` A

CΓ, B ` A

Intuitively: repeated assumptions can be eliminated.

These may seem too obvious to be worth stating, but in fact
they must be stated, because in some logics (such as LL) they
are not available!

Carl Pollard Logical Grammar: Proof-Theoretic Background

