
Proof-Theoretic Background for Linear Grammar

Carl Pollard
The Ohio State University

July 4, 2011

1 Introduction

Linear grammar (hereafter LG) is a practical framework for linguistic analy-
sis closely similar to frameworks such as abstract categorial grammar (ACG,
de Groote 2001) and lambda grammar (Muskens 2003, 2007), which in turn
are inspired by some programmatic ideas of Curry (1961) and some technical
proposals due to Oehrle (1994). A LG for a fragment of a particular natural
language (NL) recursively defines a set of ordered triples called signs, each
of which is taken to represent one of the expressions of the NL in question.
Some of these triples, called lexical entries, represent the (syntactic) words
of the NL in question. The set of lexical entries, called the lexicon is given
‘in advance’ and forms the base of the recursive definition. The recursive
part of the definition is in the form of a few (at first, just two) rules, with
whose help we can analyze more complex expressions. As we soon will see,
the lexical entries and rules can be thought of, respectively, as axioms and
inference rules of a natural-deduction proof system, and the expressions an-
alyzed by the grammar can be thought of as the theorems proved by the
system.

The three components of LG signs are called the phenogrammatical,
the tectogrammatical, and the semantic components. These can be de-
scribed roughly as follows:

• The phenogrammatical component, usually abbreviated to pheno, is
the expression’s contribution to (audible or visible) surface form, in-
cluding (at minimum) the phonologies of the words, and their linear
order. Pheno in LG corresponds to what is called the concrete syn-
tax in ACG, and simply syntax in lambda grammar (although from
a lingust’s point of view it seems more closely related to phonology
than to syntax).

1

• The tectogrammatical component, usually abbreviated to tecto, is the
expression’s syntactic combinatory potential: what it combines with
and what results from the combination. Here, as in other kinds of
categorial grammar (such as combinatory categorial grammar (CCG)
and type-logical grammar (TLG)), it is assumed that syntactic com-
bination drives semantic composition (in a sense that will be made
precise). Tecto in LG corresponds to what is called the abstract
syntax in ACG, and combinatorics in lambda grammar.

• The semantic component is the expression’s meaning. This could be
a intension, as in Montague’s (1974) PTQ, though we will use as
meanings things called hyperintensions (Pollard 2008), which are
more fine-grained than intensions. (Later, we’ll also consider dynamic
semantics, in which a sentences don’t merely express propositions, but
also affect the utterance context.)

Signs are notated in the form

` φ; τ ;σ

where:

• φ is a term in a typed lambda calculus (more precisely, a higher-
order logical theory) called the pheno calculus. Such a term, called
a pheno term, is interpreted (in the simplest case) as a string of
phonological words, i or (in more complex cases) as a higher-order
function over such strings.

• τ is a formula of linear logic, the tecto type of the sign. Intuitively,
a tecto type can be thought of as the name of a syntactic category.

• σ is a term in a typed lambda calculus (again, more precisely, a higher-
order theory) called the semantic calculus. Such a term is inter-
preted (in the simplest case) as an entity or a proposition, or (in more
complex cases) as a higher-order function over such thing.

Here’s a typical lexical entry:

` PIG; N; pig

In this lexical entry:

2

• PIG is a constant (of type s) of the pheno calculus, which denotes a
string (of length 1) whose only element is the phonological word pIg/.

• N is a (basic) tectotype, namely the type of nouns.

• pig is a constant (of type e → p) of the semantic calculus, which
denotes a certain property, namely the function that maps any entity
to the proposition that that entity is a pig.

In addition to lexical entries, which will play the role of nonlogical
axioms when we think of a grammar as a proof system, there are also
logical axioms, which correspond to the notion of ‘movement traces’ in
mainstream generative grammar. (hereafter MGG). Here’s a typical trace
(more specifically, an NP-trace):

s; NP;x ` s; NP;x

Here:

• s is a variable (of type s) of the pheno calculus, which denotes a hy-
pothetical string,

• NP is a (basic) tectotype, namely the type of noun phrases, and

• x is a variable (of type e) of the semantic calculus, which denotes a
hypothetical entity.

Traces will play a central role in the analysis of scope of quantificational
NPs, and also in the analysis of constructions usually analyzed in terms
of movement in MGG (such as constituent questions, relative clauses, and
clefts). Intuitively, a trace can be thought of as a ‘hypothetical’ syntactic
consituent.

In its simplest form, LG has only two (schematic) rules for for deducing
‘new’ signs from ‘old’ ones. In proof-theoretic terms, these two schemas cor-
respond to the inference rules Modus Ponens and Hypothetical Proof. Their
closest analogs in mainstream generative grammar are the two rules Merge
and Move. Thus, Modus Ponens is used to combine two signs (roughly, a
‘function’ sign and its argument), whereas Hypothetical Proof is used to
‘discharge’ a hypothetical constituent (similar to ‘binding a trace with an
empty operator’ in MGG).

Before we can lay out the details of LG and start using it for linguistic
analysis, we need to develop some a few technical tools, especially linear

3

logic, intuitionistic logic, typed lambda calculus, and higher order logic. To
this end, we start by introducing a style of proof theory called (sequent-
style) natural deduction, or just ND for short.

2 Proof Theory Basics and Linear Logic

Proof theory is the part of logic concerned with purely syntactic methods
for determining whether a formula is deducible from a collection of formulas.
Here what counts as a ‘formula’ varies from one theory to the next. The key
thing is that the theory only cares about the syntactic form of formulas and
not their interpretation (the part of logic that worries about that is model
theory). What counts as a ‘collection’ also varies from one proof theory to
the next. In some proof theories, collections are taken to be sets; in some
they are taken to be strings; in the proof theories we will be concerned with,
collections will be taken to be finite multisets.

Roughly speaking, finite multisets are a sort of compromise between
strings and finite sets: they are stringlike in the sense that repetitions mat-
ter, but they are setlike in the sense that order does not matter. Technically,
for any set S, we can think of a finite S-multiset as an equivalence class of
S-strings, where two strings count as equivalent if they are permutations of
each other. Alternatively, we can think of a finite S-multiset as a function
from a finite subset of S to the positive natural numbers. (So if we indi-
cate multisets between square brackets, then [A] is a different multiset from
[A,A], but [A,B] and [B,A] are the same multiset.)

To define a proof theory, we first need a recursively defined set of for-
mulas. Usually the base of the recursion provides some basic formulas, and
then the recursion clauses tell how to get additional formulas using connec-
tives. For example, in linear logic1 (LL), which we will use as a running
example in this section, we start with a set of basic formulas (say S, NP,
and N), and then define the set of formulas as follows:

• Any basic formula is a formula.

• if A and B are formulas, so is A(B.

Here the connective (is called linear implication (informally called ‘lol-
lipop’). Soon we will see that it works much like the familiar implication →
of ordinary propositional logic, but with more limited options. A couple of

1Actually, there are many linear logics. The one we describe here, whose only connec-
tive is the linear implication (, is linear implicative intuitionistic propositional logic.

4

standard notational conventions we will adopt are these: (1) we use upper-
case italic roman letters as metavariables ranging over formulas; and (2) (
associates to the right, e.g. A(B (C abbreviates A((B (C).

A finite multiset of formulas is called a context. (Careful: this is a
distinct usage from the notion of context as linguistically relevant features
of the environment in which an expression is uttered.) We use capital Greek
letters (usually Γ or ∆) as metavariables ranging over contexts. An ordered
pair 〈Γ, A〉 of a context and a formula is called a sequent; then Γ is called
the context of the sequent and A is called the statement of the sequent.
The formula occurences in the context of a sequent are called hypotheses
or assumptions.

The proof theory itself recursively defines a set of sequents, i.e. it re-
cursively defines a relation between contexts and formulas. The relation
defined by the theory is called deducibility, derivability, or provability,
and is denoted by ` (read ‘deduces’, ‘derives’, or ‘proves’). The symbol ‘`’
itself is called ‘turnstile’. The metalanguage assertion that 〈Γ, A〉 ∈ ` is
usually written Γ ` A. Such an assertion is called a judgment. If Γ is
the null multiset, we usually just write ` A. If Γ is the singleton multiset
with one occurrence of B, we write B ` A. Commas in the contexts of
judgments represent multiset union, so that, e.g. if Γ = A,B and ∆ = B,
then Γ,∆ = A,B,B.

The base clauses of the proof theory are called axioms, and the recursion
clauses are called (inference) rules. Axioms are just certain judgments,
while rules are metalanguage conditional assertions, whose antecedents are
conjunctions of judgments and whose consequent is a judgment. The judg-
ments in the antecedent of a rule are called the premisses of the rule, and
the consequent is called the conclusion of the rule.

For example, the proof theory for (pure) linear logic has one schema of
axioms, and two schemas of rules. The axiom schema, variously called Refl
(Reflexive Axioms), Hyp (Hypotheses), or simply Ax (Axioms) looks like
this:

A ` A

To call this an axiom schema is just to say that upon replacing the metavari-
able A by any (not necessarily basic) formula, we get an axiom, such as

NP ` NP

5

(In LG, hypothesis axioms will be used as (the tecto part of) traces, which
in turn will be a crucial ingredient in the analysis of certain linguistic phe-
nomena known to phrase-structure grammarians as unbounded depen-
dencies, and to mainstream generative grammarians as Ā-movement.)

The two rule schemas of linear logic are as follows:

Modus Ponens, also called (-Elimination ((E):

Γ ` A(B ∆ ` A (E
Γ,∆ ` B

Hypothetical Proof, also called (-Introduction ((I):

Γ, A ` B
(I

Γ ` A(B

Notice that Modus Ponens eliminates the connective (, in the sense that
there is an occurrence of (in one of the premisses (called the major
premiss; the other premiss is called the minor premiss). Whereas, Hypo-
thetical Proof introduces (, in the sense that there is an occurrence of
(in the conclusion but not in the (single) premiss. The presence of pairs
of rules that eliminate and introduce connectives are characteristic of the
natural-deduction style of proof theory.

If in fact Γ ` A, then we call the sequent 〈Γ, A〉 a theorem (in the
present case, of linear logic). It is not hard to see that Γ ` A if and only if
there is a proof tree whose root is labelled with the sequent 〈Γ, A〉. Here, by
a proof tree we mean an ordered tree whose nodes are labelled by sequents,
such that

• the label of each leaf node is the sequent of an axiom; and

• the label of each nonleaf node is the sequent of the conclusion of a rule
such that the sequents of the premisses of the rule are the labels of the
node’s daughters.

By convention, in displaying a proof tree, the root appears at the bottom and
the leaves at the top (so from a logician’s point of view, linguist’s trees are
upside down). Even though technically the labels are sequents, we conven-
tionally write the corresponding judgments (metalanguage assertions that
the sequents are deducible). And instead of edges connecting mothers to

6

daughters as in linguist’s trees, we write horizontal lines with the label of
the mother below and the labels of the daughters above (just as in inference
rules). Sometimes as a mnemonic we label the horizontal line with the name
of the rule schema that was instantiated there.

The simplest possible proof tree in linear logic has just one leaf which is
also the root. In this case the only option is for the node to be labelled by
a Hypothesis, e.g.:

NP ` NP

Intuitively, this can be thought of as: suppose you had an NP; then, sure
enough, you’d have an NP. Don’t worry if this doesn’t seem to make any
sense yet; it will become clear what this means when we use an elaborated
form of Hypothesis (namely, trace) in a linguistic analysis.

Here is a (very) slightly less trivial proof tree:

NP ` NP (I` NP (NP

One more example:

NP ` NP NP (S ` NP (S (E
NP,NP (S ` S

(I
NP ` (NP (S) (S

(I` NP ((NP (S) (S

3 Positive Intuitionistic Propositional Logic

Like most contemporary semantic theories, LG uses higher-order logic (HOL)
as a notation for meanings. One of the hallmarks of LG (and related frame-
works such as λ-grammar and ACG is that it also uses HOL as a notation
for phenos. HOL is an elaboration of a system of notation for functions
called typed lambda calculus (TLC). And TLC in turn is based on the
proof theory of positive intuitionistic propositional logic (PIPL), which we
now consider.

PIPL is just like the familiar propositional logic studied in introductory
logic courses, except that (1) it has fewer connectives, and (2) it has fewer

7

rules. To be more specific, PIPL has the nullary connective (i.e. distin-
guished formula) T (read ‘true’) and the two binary connectives → (intu-
itionistic implication) and ∧ (conjunction), but not F (false), ∨ (disjunc-
tion), or ¬ (negation)

The axioms of PIPL include the Hypothesis schema

A ` A

just as in linear logic, as well as the Truth axiom

` T

The rules of PIPL include elimination and introduction schemas for the
two binary connectives, as well as two schemas of structural rules which
only affect the contexts of sequents.

The rules for intuitionistic implication are exactly the same as for linear
implication (except with (replaced by →:

Modus Ponens, also called →-Elimination (→E):

Γ ` A→ B ∆ ` A →E
Γ,∆ ` B

Hypothetical Proof, also called →-Introduction (→I):

Γ, A ` B
→I

Γ ` A→ B

The rules for conjunction include two elimination rules (for eliminating the
left and right conjunct respectively):

∧-Elimination 1 (∧E1):

Γ ` A ∧B ∧E1
Γ ` A

8

∧-Elimination 2 (∧E2):

Γ ` A ∧B ∧E2
Γ ` B

∧-Introduction (∧I):

Γ ` A ∆ ` B ∧I
Γ,∆ ` A ∧B

Finally, the two structural rule schemas are as follows:

Weakening (W):

Γ ` A
W

Γ, B ` A

Contraction (C):

Γ, B,B ` A
C

Γ, B ` A

Weakening says that if we can prove something from certain assumptions,
we can also prove it with more assumptions. Contraction says that repeated
assumptions can be eliminated. These may seem too obvious to be worth
stating, but in fact they must be stated, because in some logics (such as LL)
they are not available!

As exercises, show that the following are provable in PIPL (their coun-
terparts with → replaced by (are not provable in LL!): (1) A ` B → A,
and (2) A→ A→ B ` A→ B.

9

