A-Grammars and the Syntax-Semantics
Interface *

Reinhard Muskens

In this paper we discuss a new perspective on the syntax-semantics inter-
face. Semantics, in this new set-up, is not ‘read off’ from Logical Forms
as in mainstream approaches to generative grammar. Nor is it assigned
to syntactic proofs using a Curry-Howard correspondence as in versions of
the Lambek Calculus, or read off from f-structures using Linear Logic as
in Lexical-Functional Grammar (LFG, Kaplan & Bresnan [9]). All such
approaches are based on the idea that syntactic objects (trees, proofs, f-
structures) are somehow prior and that semantics must be parasitic on those
syntactic objects. We challenge this idea and develop a grammar in which
syntax and semantics are treated in a strictly parallel fashion. The grammar
will have many ideas in common with the (converging) frameworks of catego-
rial grammar and LFG, but its treatment of the syntax-semantics interface is
radically different. Also, although the meaning component of the grammar
is a version of Montague semantics and although there are obvious affinities
between Montague’s conception of grammar and the work presented here,
the grammar is not compositional, in the sense that composition of meaning
need not follow surface structure.

A-Grammars

We follow the tradition of Curry [6], Cresswell [4], and Oehrle [13, 14, 15]
in representing syntactic information with the help of typed A-terms.! For
example, Oehrle [13, 14] considers multidimensional signs such as those in (1),

*From: Robert van Rooy and Martin Stokhof, editors, Proceedings of the Thirteenth
Amsterdam Colloquium, University of Amsterdam, Amsterdam, 2001, pages 150-155.
LCurry considers expressions containing subscripted blanks, such as ‘“—; is between

— and —3’ or ‘—; were eaten by the children’. Functors can apply to arguments and
arguments are to be substituted for blanks in the order of the subscripts. Essentially



consisting of a A\-term over strings, a semantic A-term, and a type. (la) can be
combined with (1b) by applying (1a)’s first term to (1b)’s first term, applying
(1a)’s second term to (1b)’s second term, and applying Modus Ponens to the
types. The result is (1c).

(1) a. AxAy. y likes x : Az Ay.like(y, x) : np — (np — $)
b. John: j :np
c. Ay.y likes John : Ay.like(y,j) : np — s

Oehrle’s work will be our point of departure, but we deviate from it in two
respects. First, while [13, 14] combine signs such as the ones in (1) with the
help of the undirected Lambek Calculus, our signs will be combined using
linear combinators. Mathematically this boils down to the same thing, as
proofs in the undirected Lambek Calculus are in 1-1 correspondence with the
latter (Van Benthem [1, 2, 3]). But a move from proofs to combinators spares
the working linguist much technical overhead and it will serve our purpose
to stress the point that semantics need not be dependent on any form of
syntax. A second divergence from Oehrle’s work is that we move from A-
terms over structures (strings in [13, 14], but also trees and f-structures in
[15]) to A-terms over descriptions of structures. This is in accordance with a
general tendency in linguistics (starting with [9]) to replace structures with
descriptions of structures as the prime vehicles of representation.
Consider the three 3-dimensional signs in (2).

(2) a. john : Af.arc(f, cat, N) A\ arc(f, num, sg) A arc(f, pers,3) : john
b. mary : Af.arc(f, cat, N) A arc(f, num, sg) \ arc(f, pers,3) : mary

C. )\t1>\t2[t2 [lOVGS tl]] .
AR A3 f1 fo[ FL(f1) A Fo(fo) A are(f, cat, V) A are( f, tense, pres) A
arc(f1, cat, N) A arc(f, obj, f1) A arc(fs, cat, N) A arc( fa, num, sg) A

arc(va pers, 3) A CL?"C(f, SUbja f2)] :
Az AyNi.love(y, x, 1)

then, although Curry does not explicitly mention this, these terms are lambda terms over
syntactic objects.



syntax: k. f:v t,F vt T,F : (vt)(vt)
semantics: T,y:e 1,j:8 p: st P :e(st)

Table 1: Typographical conventions for variables used in this paper. Var :
Type means that Var (with or without subscripts or superscripts) always has

type Type.

These signs each consist of a c-structure component, an f-structure compo-
nent, and a semantic component. Expressions in sans serif in the c-structure
terms are of type vt, and denote sets of nodes. For example, john can be
thought of as the set of nodes that are labeled ‘John’, whereas an expression
such as [loves mary| can be thought of as the set of nodes k directly dominat-
ing a node £ labeled ‘loves’ and a node ks labeled ‘Mary’, with k; preceding
ks.

The f-components of our signs consist of A-terms over the first order
feature language of Johnson [8] and the semantics in the third component is
in accordance with a streamlined form of Montague’s [10] theory. Constants
john and mary are of type e and love is of type e(e(st)). Constants cat, num,
pers, etc. are of a type a (attributes), while N, sg, 3, ... are of type v (nodes).
More typing information is given in Table 1. We consider a grammar with
three dimensions here, but in general the number of dimensions of a grammar
is arbitrary (though fixed). The terms that we are interested in are all closed
and we require that lexical elements have closed terms in each dimension.

Signs can be combined by means of pointwise application. In general, if
M = (Mj,...,M,) and N = (Ny,...,N,) are sequences of A-terms such that
M;(N;) is well-typed for each i, the pointwise application of M to N is just

<M1(N1)7 ey Mn(Nn» .

Generalizing the notation for application, we denote this as M(N). Tt is
easily seen that the result of pointwise application of (2c) to (2a) equals (3a)
modulo standard equivalences and that (3a)((2b)) reduces to (3b).

(3) a. Ata.[t2 [loves john]] :
AN f3f1fo| Fa(fa)Nare(f, cat, V) Aare(f, tense, pres)ANare( f1, cat, N)
A arce(f, obj, f1) A arc(fa, cat, N) A arc( fo, num, sq) A arc(f2, pers, 3) A

CL’I"C(f, SUbj7 f?)] :
AyAi.love(y, john, 1)



b. [mary [loves john]] :
Af3fy falare(f, cat, V) A arc(f, tense, pres) A arc( f1, cat, N) A
arc(f, obj, f1) A arc(fa, cat, N) A arc(fa, num, sg) A arc( fa, pers, 3) A
arc(f, subj, f2)] :

Ai.love(mary, john, 1)

The three descriptions in sentential signs such as (3b) each denote a set in
every possible model of the language; the first two denote sets of nodes (type
vt), the third a set of possible worlds (a proposition, type st). The idea is
that if the second set is non-empty in some model of the first four axioms
in [8], then any node satisfying the first description should be connected to
the truth conditions expressed in the third element. The requirement that
the second component should be satisfiable provides for a subcategorization
mechanism. E.g., combining (3a) with a plural subject would have led to an
f-description that can only denote the empty set.

In (4) and (5) some more lexical signs are given with two results of their
possible combinations in (6).

(4) a. man: Af.arc(f, cat, N) A arc(f, num, sg) \ arc(f, pers,3) : man

b. woman : Af.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3) : woman

(5) a. MAT.T([at]):
AFAF.F(MfE(f)Narce(f, cat, N) A arc( f, num, sg) A arc(f, pers, 3)) :
AP'PXi3z[P'(x)(i) A P(x)(i)]

b. MAT.T'([every t]) :
AFAF.F(MfE(f)Narce(f, cat, N) A arc(f, num, sg) A arc(f, pers, 3)) :
AP PXNz[P'(x)(i) — P(x)(i)]

(6) a. A\T.T([every man]) :
AF.F(Mf.arc(f, cat, N) A\ arc(f, num, sg) A arc(f, pers, 3)) :
APAiVz[man(z,i) — P(z)(i)]

b. AT.T([a woman]) :
AF.F(ANf.arc(f, cat, N) A arc(f, num, sg) A arc(f, pers,3))
APXidz[woman(z,i) A P(x)(i)]



abstract type syntactic dimensions semantic dimension

S vt st
NP vt e
N vt e(st)

Table 2: Concretizations of abstract types used in this paper.

The terms that our signs consist of are typed, but it is expedient to type
the signs themselves as well. Types for signs will be called abstract types.
Abstract types in this paper are built up from ground types s, NP and N with
the help of implication, and thus have forms such as NP S, N((NP $)s), etc.
A restriction on signs is that a sign of abstract type A should have a term of
type A® in its i-th dimension. The values of the function .* for ground types
can be chosen on a per grammar basis and in this paper are as in Table 2. For
complex types, the rule is that (AB)" = A’B’. This means, for example, that
NP(NP 8)" = NP(NP S)® = (vt)((vt)vt) and that NP(NP 8)° = e(e(st)). As a
consequence, (2¢) should be of type NP(NP S). Similarly, (2a) and (2b) can
be taken to be of type NP, (3a) and (3b) are of types NP s and S respectively,
etc. In general, if M has abstract type AB and N abstract type A, then the
pointwise application M (V) is defined and has type B.

Abstraction can also be lifted to the level of signs. Supposing that
the variables in our logic have some fixed ordering and that the number
of dimensions of the grammar under consideration is n, we define the k-
th n-dimensional variable £ of abstract type A as the sequence of variables
(&1,...,&,), where each & is the k-th variable of type A’. The pointwise
abstraction A(M is then defined as (A& My, ..., A\, M,). A definition of
pointwise substitution is left to the reader.

With the definitions of pointwise application, pointwise abstraction, and
n-dimensional variable in place, we can consider complex terms built up with
these constructions. (7a), for example, is the pointwise application of (6b)
to the pointwise composition of (6a) and (2c). Here ( is of type NP. (7a) can
be expanded to (7b), where each dimension of a lexical sign is denoted with
the help of an appropriate subscript (e.g. (6b); is AT.T'([a woman])). The
terms here can be reduced and the result is as in (7c), a sign coupling the
c-description in its first dimension to one of its possible readings. The other
reading is obtained from (7d), which reduces to (7e).

(7) a. (6b)(AC.(6a)((2c)(¢)))



(6b)1(AC1-(62)1((2¢)1(C1))) :
(6b)2(AC2.(62)2((2¢)2(C2))) -
(6b)3(AC3.(6a)3((2¢)3(C3)))

c. [[every man] [loves [a woman]]] :
AfAfy falare(f, cat, V) A arc(f, tense, pres) A arc( f1, cat, N) A
arc(f, obj, f1) N arc(fa, cat, N) A arc(fo, num, sq) A arc(fo, pers,3) A

arc(f, subj, f2)] :
NiFy[woman(y, i) A Vx[man(z,i) — love(x,y,1)]]

d. (6a)(ACa-(6b)(AC1-(2¢)(¢1)(C2)))

e. [[every man] [loves [a woman]]] :
AfAfy falarc(f, cat, V) N arc(f, tense, pres) A arc( f1, cat, N) A
arc(f, obj, f1) N arc(fa, cat, N) A arc(fo, num, sq) A arc(fo, pers,3) A

arc(f, subj, f2)] :
\iVx[man(z,i) — Jy[woman(y, i) A love(x,y,1)]]

Let us call terms such as (7a) and (7d), which are built up from lexical
signs with the help of n-dimensional variables, pointwise application and
abstraction, n-terms. It is worth to note that n-terms are subject to the laws
of a, B, and n-conversion, i.e. reasoning with them is as usual. But clearly, not
every n-term makes for an acceptable coupling between syntax and semantics.
We restrict ourselves to linear combinations of lexical elements. These are
n-terms that are closed and conform to the condition that every abstractor
A(, with ¢ an n-dimensional variable, binds exactly one free (. n-terms
conforming to this condition are called generated signs.> Conditions such
as the requirement that the third component of a generated sign must be
satisfiable are admissibility conditions and a generated sign obeying them is
called admissable.

Multidimensional grammars that are set up in the way sketched here,
with A\-terms in each dimension of the grammar and linear combination as a
generative device, will be called \-grammars.

Since any n-term M obeys the usual laws of A-conversion, it can be written
in the form C(Ly)---(L,,), where Ly, ..., L,, are lexical signs and C' is an
n-term that does not contain any lexical material. If M is closed, C'is a multi-
dimensional (and typed) variant of a combinator in the sense of [5]. In case

2Note that any linear combination of generated signs is itself a generated sign.



M is a generated sign, C' will correspond to a linear (or BCI) combinator.
For example, (7a) can be rewritten as (8), with AQ1ARAQ2.Q1(A.Q2(R(()))
playing the role of the linear combinator combining (6b), (2c), and (6a).

(8) AQIARAQ2.Q1(A¢.Q2(R(()))((6b))((2¢))((6a))

From the fact that linear combinators play an important underlying role we
see that A\-grammars have obvious affinities not only with LFG and Lambek
Categorial Grammar, but also with Combinatory Categorial Grammar (see
e.g. [17, 18]). But A-grammars should be distinguished from standard cate-
gorial grammars in that they are non-directional and do not use derivations.

Conclusion

It is a wideheld belief among linguists that semantics must in some sense
be dependent upon syntax. Syntax first provides a scaffolding and seman-
tics then follows the syntactic set-up, computing the meaning of a complex
expression from the meanings of its syntactic parts. Such a compositional
scheme works fairly well for English and related languages, although even in
Montague’s pivotal work it had to be assumed that a sentence can have as
its parts (a) a noun phrase deep within that sentence and (b) the sentence
lacking that noun phrase.

In Dalrymple et al. [7] it was observed that a problem arises when non-
configurational languages such as Warlpiri are considered. In these languages
combinations of words may form a semantic unit altough they are no syntactic
unit. An example is (9) (see Simpson [16]), where the adjective wita-jarra-riu
is not adjacent to the noun (kurdu-jarra-riu) that it modifies. The constituent
structure of this sentence (and indeed of many Warlpiri sentences) is flat, with
one S node dominating all preterminals.?

(9) Kurdu-jarra-rlu  ka-pala maliki wajili-pi-nyi  wita-jarra-rlu
child-dual-ergative pres-3ds dog  chase-nonpast small-dual-ergative
‘Two small children are chasing the dog’, or
‘T'wo children are chasing the dog and they are small’

Since wita-jarra-rlu and kurdu-jarra-rlu do not form a syntactic constituent
but should still be considered a semantic whole, the idea of erecting a syn-
tactic scaffold first and then using it in semantics breaks down. Constituent

3Any permutation of the words in (9) that leaves the ‘auxiliary’ element ka-pala in
second position is also an acceptable Warlpiri sentence with the same two meanings.

7



structure simply does not provide enough structure for interpretation. The
case is typical for a wide class of languages.

In [7] this observation motivates a development in which semantics is
read off from functional structure with the help of the {—o, ®} fragment of
intuitionistic Linear Logic (= the undirected Lambek Calculus). In this paper
we have taken the more radical course of using linear combinators directly for
combining syntactic / semantic signs. This simplifies the grammatical set-
up, as in our approach there is no need for a phrase structure component as
a separate generative engine. Linear combinations suffice. The toy grammar
presented here shows that it is possible to do syntax and semantics really
in tandem. Interpretation does not need any previous syntactic scaffolding,
whether it be a constituent structure, a functional structure, a Lambek /
Linear Logic proof, or any other syntactic structure. There is no space here
to give a detailed analysis of (9), but an essential element should be that
when the sign of an adjective is combined with the sign of a noun, the result
in the c-dimension need not be a description of an adjective-noun constituent.
A description requiring sisterhood suffices.

The grammar in this paper also shows that it is possible to import many
ideas of Lexical-Functional Grammar into an essentially categorial frame-
work. In this we build upon Oehrle [15]. That our move from structures
to descriptions allows the incorporation of more ideas from LFG (constrain-
ing equations, path constraints for long distance dependencies) is shown in
Muskens [12]. A development of the theory that is more geared towards
categorial grammar and the multimodal enterprise can be found in Muskens
[11].

References

[1] J.F.A.K. van Benthem. FEssays in Logical Semantics. Reidel, Dordrecht,
1986.

[2] J.F.AK. van Benthem. The Semantics of Variety in Categorial Gram-
mar. In W. Buszkowski, W. Marciszewski, and J.F.A.K. van Benthem,
editors, Categorial Grammar, pages 37-55. John Benjamins, Amster-
dam, 1988.

[3] J.F.AK. van Benthem. Language in Action. North-Holland, Amster-
dam, 1991.



[4]
[5]

[6]

[10]

[11]

[12]

[13]

[14]

M.J. Cresswell. Logics and Languages. Methuen, London, 1973.

H. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland,
Amsterdam, 1958.

H.B. Curry. Some Logical Aspects of Grammatical Structure. In
Structure of Language and its Mathematical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathematics, pages 56-68. AMS, 1961.

M. Dalrymple, J. Lamping, and V. Saraswat. LFG Semantics via Con-
straints. In Proceedings of the Sizth Meeting of the European ACL. Fu-
ropean Chapter of the Association for Computational Linguistics, 1993.

M. Johnson. Logic and Feature Structures. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, Sydney, Aus-
tralia, 1991.

R. Kaplan and J. Bresnan. Lexical-Functional Grammar: a Formal
System for Grammatical Representation. In J. Bresnan, editor, The
Mental Representation of Grammatical Relations, pages 173-281. The
MIT Press, Cambridge, MA, 1982.

R. Montague. The Proper Treatment of Quantification in Ordinary
English. In Formal Philosophy, pages 247-270. Yale University Press,
New Haven, 1973.

R.A. Muskens. Language, Lambda’s, and Logic. Submitted for publica-
tion, 2001.

Reinhard Muskens.  Categorial Grammar and Lexical-Functional
Grammar. In Miriam Butt and Tracy Holloway King, edi-
tors, Proceedings of the LFGO01 Conference, University of Hong
Kong, Stanford CA, 2001. CSLI Publications. http://csli-
publications.stanford.edu/hand /miscpubsonline.html.

R.T. Oehrle. Term-Labeled Categorial Type Systems. Linguistics and
Philosophy, 17:633-678, 1994.

R.T. Oehrle. Some 3-Dimensional Systems of Labelled Deduction. Bul-
letin of the IGPL, 3:429-448, 1995.



[15] R.T. Oehrle. LFG as Labeled Deduction. In M. Dalrymple, editor,
Semantics and Syntax in Lexical Functional Grammar, chapter 9, pages
319-357. MIT Press, Cambridge, MA, 1999.

[16] J. Simpson. Warlpiri Morpho-Syntaz: A Lezicalist Approach, volume 23
of Studies in Natural Language and Linguistic Theory. Kluwer, Dor-
drecht, 1991.

[17] M. Steedman. Surface Structure and Interpretation. MIT Press, 1996.

[18] M. Steedman. The Syntactic Process. MIT Press, 2000.

10



