
Research on Language and Computation 00: 1–22, 2007.

c© 2007 Springer Science+Business Media, Inc. Manufactured in The Netherlands.
1

Separating Syntax and Combinatorics in Categorial

Grammar

REINHARD MUSKENS (r.a.muskens@uvt.nl)
Department of Philosophy, Tilburg University, The Netherlands

Key words: categorial grammar, lambda grammar

1. Introduction

The ‘syntax’ and ‘combinatorics’ of my title are what Curry (1961) referred
to as phenogrammatics and tectogrammatics respectively. Tectogrammatics
is concerned with the abstract combinatorial structure of the grammar and
directly informs semantics, while phenogrammatics deals with concrete op-
erations on syntactic data structures? such as trees or strings.?? In a series of
previous papers (Muskens, 2001a; Muskens, 2001b; Muskens, 2003) I have ar-
gued for an architecture of the grammar in which finite sequences of lambda
terms are the basic data structures, pairs of terms 〈syntax, semantics〉 for
example. These sequences then combine with the help of simple general-
izations of the usual abstraction and application operations. This theory,
which I call Lambda Grammars and which is closely related to the inde-
pendently formulated theory of Abstract Categorial Grammars (de Groote,
2001; de Groote, 2002), in fact is an implementation of Curry’s ideas: the
level of tectogrammar is encoded by the sequences of lambda-terms and
their ways of combination, while the syntactic terms in those sequences
constitute the phenogrammatical level. In de Groote’s formulation of the
theory, tectogrammar is the level of abstract terms, while phenogrammar is
the level of object terms.

? Curry thought of tectogrammatics in terms of operations on structures, but since his
writing another perspective has gained popularity. This is the descriptions approach to
grammatical representation (pioneered in Kaplan and Bresnan, 1982 and Marcus et al.,
1983). In this paper we will take the descriptions perspective, but will consider descriptions
of trees, strings, and the like as belonging to the phenogrammar.

?? Curry’s distinction had almost been forgotten when attention to it was drawn in
Dowty (1982). See also the highly interesting Dowty (1995), which was presented at the
1989 Tilburg conference on discontinuous constituency.

separating.tex; 4/06/2007; 13:23; p.1



2 REINHARD MUSKENS

While my previous papers on the subject mainly concentrated on the
tectogrammatical level of the theory and the theory’s overall architecture‡

(as is perhaps a natural start), I now want to focus on phenogrammar in
some more detail. Many ways in which this dimension of the grammar could
be modeled are consistent with the overall theory, but I will opt here for a
multimodal approach that directly derives from existing work in categorial
grammar (see e.g. Morrill, 1994, Moortgat, 1997). Syntax and combinatorics
are interleaved in existing work on multimodal categorial grammar and are
dealt with within a single generalization of the Lambek Calculus (Lambek,
1958; Moortgat, 1997), but on the present account the two will be sepa-
rated. Each will each get its own calculus. In the case of tectogrammar this
will be the −◦ fragment of linear logic, or, equivalently, the set of linear
lambda terms; for phenogrammatics we will have a pure multimodal logic‡‡

The result is a much-needed simplification: splitting multimodal categorial
grammar into a multimodal and a categorial part makes working with each
of these parts humanly feasible. The categorial part will be extremely simple,
and inferences in the multimodal calculus will in fact resemble derivations
in generative syntax to some extent. The resemblance can be made closer or
less close, depending on which phenogrammar postulates are adopted.

The approach will be illustrated with the help of a treatment of some
aspects of Dutch word order. Within multimodal categorial grammar very
interesting accounts of Dutch verb clustering and verb second have been
worked out in Oehrle (1998) and Moortgat (1999)? and we will consider in
some detail how a similar analysis can be carried out within the present
setting. Descriptive originality will not be our aim, as the point we want to
make is purely architectural.?? The objectives here are to recast Oehrle’s and

‡ Muskens (2001a) additionally focuses on the relation between Lambda Grammars and
Lexical-Functional Grammar (Kaplan and Bresnan, 1982) and argues that the resemblance
is close, especially if the theory is set up three-dimensionally, with sequences of λ-terms
〈C, F, S〉 in which C describes c-structure, F f-structure, and S is the semantics. Muskens
(2003) works out an implementation of phenogrammar as a multimodal logic, as is done
here, but in considerably less detail.

‡‡ ‘Pure’ in the sense that the logic will be a straightforward generalization of the usual
modal logics, not only model-theoretically, but also proof-theoretically (i.e. there will be
no resource-sensitivity). Modal logics will be introduced as fragments of classical logic, i.e.
by transcribing their Kripke-semantics.

? The work of Oehrle and Moortgat cited here goes back to Moortgat and Oehrle (1993)
and joint presentations in a number of other venues (particularly, ESSLLI courses in
Barcelona (1995), Aix-en-Provence (1997), and Utrecht (1999), were numerous fragments
were discussed and implemented in Richard Moot’s grail theorem prover, www.labri.
fr/perso/moot/grail.html).

?? Although I do claim that Lambda Grammars have an empirical edge over directed
forms of categorial grammar (extraction from medial positions is treated without any
difficulty, see Muskens (2003) and below), I do not believe that the perspective has any
conclusive empirical advantages in the domain of description (Dutch word order) that was
chosen for illustration here. Things do seem to become much simpler though.

separating.tex; 4/06/2007; 13:23; p.2



SEPARATING SYNTAX AND COMBINATORICS 3

Moortgat’s work in a Lambda Grammars setting, to identify the technical
changes to this work that are needed in order to do this and get the logical
machinery going, and, hopefully, to convince the reader that conceptual
simplifications are to be gained in this direction. These conceptual simpli-
fications will also to some extent clarify the relation between multimodal
categorial grammar and other approaches that are less logically oriented.

The rest of the paper will be organized as follows. The next section
will introduce the overall theory. In section 3 it is explained how Lambda
Grammars can be provided with a multimodal component in the syntactic
dimension and how such a multimodal component can be used to obtain
a treatment of some aspects of Dutch word order. A conclusion ends the
paper.

2. Lambda Grammars

Lambda Grammars are a variant of Categorial Grammar (CG) that dif-
fers from existing accounts of CG in that it treats syntactic and semantic
information as completely on a par in the sense that there is no asym-
metric dependency of semantics upon syntax as there is in most theories
of grammar. The theory also differs from standard forms of CG in that its
core combinatorial engine is essentially undirected. No distinction is made
between categories that seek material on their right and those that seek
it on their left, as far as the core logical engine is concerned. It is only
in one of the specialised dimensions of the grammar that word order (and
dominance) can be brought into the picture. There are several advantages
to this. One linguistic advantage is that extraction from medial positions

becomes possible without any further addition to the theory. It is well known
that directed systems such as the Lambek Calculus (Lambek, 1958; Moort-
gat, 1997) can handle expressions that in a transformational account would
involve movement, such as the philosopher who Plato wrote about. This is an
important advantage of the Lambek Calculus over the basic AB system (Bar-
Hillel, 1953), which does not allow for the hypothetical reasoning needed
here. But unfortunately, the directed character of the calculus precludes a
straightforward analysis of movement from medial positions, such as in the

philosopher who Plato wrote about in the Timaeus (see Moortgat (1997) for
further discussion of the problem). There are extensions of the basic Lambek
system (Morrill, 1994; Moortgat, 1997) that can deal with medial extraction,
but at the price of complication and not as straightforwardly as peripheral
extraction is dealt with in the original calculus. I interpret this as a sign
that directionality should not be part of the basic calculus.

Modern versions of the Lambek Calculus, such as those discussed in
Morrill (1994) and Moortgat (1997), are almost always multidimensional

(Oehrle, 1988). The basic data structures of these grammars, called signs,

separating.tex; 4/06/2007; 13:23; p.3



4 REINHARD MUSKENS

are n-tuples, where n is the (fixed) dimensionality of the grammar and
each element of an n-tuple corresponds to a component of the grammar,
e.g. 〈syntax, semantics, features〉. Such signs are then combined using the
calculus. It can be argued almost a priori that, since signs in fact always have
a syntactic (or prosodic) component, this is the place where word order
information preferably should be represented. Representing directionality
in the core calculus by means of the usual slashes (\ and /) is therefore
unnecessary (see also the comments on the Lambek calculus in Curry, 1961).

Moving to an undirected calculus allows us to restrict ourselves to the
−◦ fragment of linear logic (= the calculus L*P of (van Benthem, 1986)),
or, what boils down to the same thing, the linear (pure) λ-terms, which is a
pleasantly simple system.

Before moving to our main topic, a multimodal treatment of the syntax,
or phenogrammar, dimension of Lambda Gammars, we give a short intro-
duction to the overall theory. For a fuller exposition the reader is referred
to (Muskens, 2003) and to (Muskens, 2001a), which also explores the con-
nection to Lexical-Functional Grammar (LFG, Kaplan and Bresnan, 1982).
The system builds upon earlier work in CG, especially Curry (1961), Oehrle
(1994) and Oehrle (1995). For more on the relation to this earlier work,
again see Muskens (2003).

2.1. the formal details

The basic data structures of Lambda Grammars are n-tuples of typed λ-
terms and the grammar’s core logical machinery is obtained by generalizing
operations on typed λ-terms in an obvious way. It will be expedient to have
two kinds of types: concrete types for typing λ-terms and abstract types to
type n-tuples of these. Both kinds of types are obtained by starting from
a pre-given set of basic types and using the rule that (AB) is a concrete
(abstract) type if A and B are concrete (abstract) types. In the examples
below, signs will be pairs of λ-terms, basic concrete types will be ν (node or
resource), e (entity), t (truth value), and s (world), and basic abstract types
will be s, np and n. For each dimension d (with 1 ≤ d ≤ n), a concretization

operator cd sends abstract types to concrete types. The values of the cd for
basic abstract types can be chosen freely and in this section will be as in
Table I; for complex types AB we let cd(AB) = cd(A)cd(B), i.e. the cd are
type homomorphisms. A tuple 〈M1, . . . ,Mn〉 is said to have abstract type A
if each Mi is of concrete type ci(A). Signs are n-tuples typed in this way.

separating.tex; 4/06/2007; 13:23; p.4



SEPARATING SYNTAX AND COMBINATORICS 5

Table I. Concretizations of abstract types used in this section

abstract type syntax (d=1) semantics (d=2)

s νt st

np νt e

n νt e(st)

Suppose M = 〈M1, . . . ,Mn〉 has type AB and N = 〈N1, . . . , Nn〉 is of
type A. Then the pointwise application of M to N is defined as?

(MN) = 〈(M1N1), . . . , (MnNn)〉 .

It is also possible to define pointwise abstraction. Call X = 〈X1, . . . , Xn〉
the m-th multi-dimensional variable of type A if each of the Xi is the m-th
variable of type ci(A) (in some given ordering). Let X = 〈X1, . . . , Xn〉 be
such a variable of type A and let M = 〈M1, . . . ,Mn〉 be a sign of type B.
Then

λX.M = 〈λX1.M1, . . . , λXn.Mn〉 ,

is of type AB.
We can use these pointwise application and abstraction operators to com-

bine elements from a lexicon of signs. For example, supposing that the signs
in (1) are in our lexicon,? we can, using (pointwise) application obtain the
signs in (2), i.e. (2a) is (1c) applied to (1a) and (2b) = ((1d)(1b)).

(1) a. 〈boy, boy〉:n

b. 〈girl, girl〉:n

c. 〈λtλT.T (every • t), λP ′Pλi∀x[P ′xi → Pxi]〉:n((np s)s)

d. 〈λtλT.T (a • t), λP ′Pλi∃x[P ′xi ∧ Pxi]〉:n((np s)s)

e. 〈λt1λt2.(t2 • (kisses • t1)), λxλy.kiss yx〉:np(np s)

(2) a. 〈λT.T (every • boy), λPλi∀x[boy xi → Pxi]〉: (np s)s

? We write (AB) for the result of applying A to B and follow the usual notational con-
ventions with respect to this notation, i.e. parentheses may be omitted when no ambiguity
results and association is to the left, so that ABC is (AB)C.

? Some typing conventions used here can be found in Table II. Note that, although •
is of type (νt)((νt)(νt)) and should therefore combine with two arguments of type νt to
its right, we employ infix notation and write A • B instead of •AB. A similar convention
will hold for other operators of this type.

separating.tex; 4/06/2007; 13:23; p.5



6 REINHARD MUSKENS

Table II. Some variables and constants and their types.

syntax semantics

variables: k: ν x, y, z: e

t: νt i, j: s

T : (νt)(νt) p: st

P : e(st)

constants: •: (νt)((νt)(νt)) boy , girl , album, student , teacher , sleep: e(st)

every: νt, kisses: νt, . . . kiss : e(e(st))

show : e(e(e(st)))

help: (e(st))(e(e(st)))

b. 〈λT.T (a • girl), λPλi∃x[girl xi ∧ Pxi]〉: (np s)s

This can be carried further and, now using pointwise abstraction as well as
application, the signs in (3) are formed (here the ζ are variables of type np).
These can then be shown to be equivalent to the signs in (4), which say that
the syntax of a certain complex expression is to be associated with a certain
semantics. In the example two semantic forms associate with one and the
same syntactic form because the latter is ambiguous.

(3) a. (2b)λζ.[(2a)((1e)ζ)]: s

b. (2a)λζ ′.[(2b)λζ.[(1e)ζζ ′]]: s

(4) a. 〈((every • boy) • (kisses • (a • girl))),
λi∃y[girl yi ∧ ∀x[boy xi → kiss xyi]]〉: s

b. 〈((every • boy) • (kisses • (a • girl))),
λi∀x[boy xi → ∃y[girl yi ∧ kiss xyi]]〉: s

The signs in (3) were obtained from those in (1) and (2) (and ultimately from
those in (1) alone) by forming linear λ-terms over them: each abstractor λX
(with X multidimensional) must bind exactly one X.? This is our general
rule for generating signs, by considering linear combinations over a given

? The linearity constraint captures the resource-sensitivity of language. Prohibiting
multiple binding of variables will prevent arbitrary duplication of linguistic material and
disallowing vacuous binding prevents material to disappear altogether. This approach to
resource-sensitivity is inherited from Lambek Categorial Grammar and is akin to the
approach to semantic interpretation in LFG (Dalrymple et al., 1993) that uses linear logic
as a ‘glue’ logic.

separating.tex; 4/06/2007; 13:23; p.6



SEPARATING SYNTAX AND COMBINATORICS 7

lexicon.?? Signs obtained by such linear combination will be called generated

signs.

2.2. permutation and medial extraction

In contrast to most modern versions of categorial grammar (but in line
with Ajdukiewicz, 1935) all types in Lambda Grammars are undirected :
the application and abstraction rules make no mention of relative order of
the premises. This might, at first blush, create a worry that the formalism
overgenerates and does not distinguish between syntactic forms and their
permutations. But such worries are unfounded. Consider the linear λ-terms
over (2a), (2b) and (1e) in which each of these signs occurs exactly once. (3)
gives two examples and (5) gives two more:

(5) a. (2a)λζ.[(2b)((1e)ζ)]: s

b. (2b)λζ ′.[(2a)λζ.[(1e)ζζ ′]]: s

If the signs in (5) are worked out one gets syntax–semantics pairs for the
sentence a girl kisses every boy, entirely as expected. But will the system
overgenerate and associate (say) the syntax of every boy kisses a girl with
the semantics of a girl kisses every boy or vice versa? In order to see that it
does not, let us recall the well-known fact (discussed e.g. in van Benthem,
1991, pp. 117–119) that, up to βη-equivalence, there are exactly four linear
combinations of two quantifiers with one binary relation such that the two
quantifiers and the relation each occur exactly once in the combination. In
other words, (3) and (5) together exhaust the combinatorial possibilities and
no unwanted syntax–semantics pairs are generated here. Although types are
undirected and arguments may be permuted freely on the level of signs, such
permutations always involve both the syntactic and the semantic dimension.
Since syntax and semantics permute, but permute in tandem, no undesired
combinations arise.

This shows that the tight coupling of syntax and semantics in Lambda
Grammars manages to rein in the effects of permutation and to ensure that
we do not make the bad prediction that undirected categorial grammars
usually make: any permutation of a well-formed string is well-formed. Do we
also get predictions that improve upon directed systems? For these we turn
to extractions from medial positions. For the predictions of the standard
Lambek Calculus with respect to these see Moortgat (1997), where it is

?? In fact the signs generated in this way may form a superset of the signs we actually
want. E.g. if we let a third grammatical component consist of λ-terms over some feature
logic, as was done in (Muskens, 2001a; Muskens, 2003), we may restrict interest to those
generated signs whose feature component is consistent with an axiomatisation of features
such as the one in (Johnson, 1991). In the next section we will restrict our interest to signs
whose syntactic dimension can be shown to consist of a property of strings.

separating.tex; 4/06/2007; 13:23; p.7



8 REINHARD MUSKENS

shown that extra work is needed to get these right. On the other hand,
medial extraction is no problem in Lambda Grammars, as the next example
shows. Add the signs in (6) to the previous lexicon? and consider the linear
combination in (7a). This reduces to (7b) and we have ‘extracted’ from the
position directly after shows.

(6) a. 〈album, album〉:n

b. 〈Aad, a〉:np

c. 〈Marie,m〉:np

d. 〈λt1λt2λt3.(t3 • ((shows • t1) • (to • t2))),
λxλyλzλi.show zxyi〉:np(np(np s))

e. 〈λTλt.(t • (which • (T e))), λPλP ′λxλi.[P ′xi ∧ Pxi]〉: (np s)(n n)

(7) a. (6e)(λζ.(6d)ζ(6b)(6c))(6a):n

b. 〈(album • (which • (Marie • ((shows • e) • (to • Aad))))),
λxλi.[album xi ∧ show mxai]〉:n

What these data and analyses seem to suggest is that the move of plac-
ing word order information in a separate syntactic dimension and free-
ing the type system from its usual directedness (a move already present
in Oehrle, Oehrle, 1994, 1995) gives a better fit with the data. There is
enough flexibility to allow extraction from medial as well as from peripheral
positions,? but arbitrary permutation is avoided.

3. Multimodality

An n-dimensional Lambda Grammar combines n + 1 logics in a completely
modular way. There is one core logic of combination, ‘taking linear lambda
terms over the lexicon’, which essentially corresponds to the −◦ fragment
of intuitionistic linear logic, or the logic of the combinators B, C and I.
Moreover, each of the n dimensions consists of (closed) λ-terms over some
logic. I make it a strategy to use classical type theory in each dimension
and to impose any needed structure with the help of axioms. For example,
in Muskens (2001a) and Muskens (2003) a feature dimension was obtained
by taking λ-terms over the first-order feature logic of Johnson (1991), who

? For the definition of the empty word e, see 3.1 below.
? There are clearly many positions from which extraction is impossible and this needs to

be accounted for, in directed as well as in undirected systems. What I claim here is that the
medial/peripheral distinction that directed systems make is not the right generalization
on which such an account should be built.

separating.tex; 4/06/2007; 13:23; p.8



SEPARATING SYNTAX AND COMBINATORICS 9

axiomatizes features using a simple set of axioms. For the semantic com-
ponent we can take translations as in (Muskens, 1995) (without necessarily
partializing the logic as is done there), allowing any axioms that might be
needed.

The syntactic component deserves some special attention. Since phrase
structure is no longer dealt with on the combinatorial, tectogrammatical,
level of the grammar we must deal with it separately. But the multimodal
analyses of movement and general restructuring that we find in modern
versions of CG are still available if we decide that the concretizations of
types such as s, np and n should not simply denote nodes (or resources),
but sets of these, as in Table II. Binary operators such as • then essentially
get the type of binary modalities over the ν domain: (νt)((νt)(νt)). We can
flesh this out by considering ν(ν(νt)) relations Rm for modes m and letting
•m be an abbreviation of

λt1t2λk.∃k1k2[R
mkk1k2 ∧ t1k1 ∧ t2k2] .

This is a straightforward transcription of the usual clause for a binary pos-
sibility operator in a Kripke style truth definition (see Kurtonina (1995) for
the treatment of • as a binary modality). It is also easy to obtain unary
modalities 3m by transcribing the clauses for unary possibility operators,
using an accessibility relation of type ν(νt) this time. If Rm is such a binary
relation, write 3m for

λtλk.∃k1[R
mkk1 ∧ tk1] .

We may also write 2m for?

λtλk.∀k1[R
mk1k → tk1] .

The move to let categories such as s, np and n (and perhaps all phrasal
projections) denote sets of resources also immediately provides us with a
Boolean structure and what is in effect a notion of consequence in the
syntactic domain. Here are two abbreviations that will come in handy.

(8) a. A u B abbreviates λk.Ak ∧ Bk

b. A v B abbreviates ∀k[Ak → Bk]

An immediate result of the previous definitions is the validity of (9).

(9) 3m2mA v A

? Note that this definition of 2m is not literally a transcription of the usual Kripke
semantics but is what we would get if the converse of Rm were our accessibility relation.
Such modalities are often denoted 2

↓
m, but we will drop the superscript.

separating.tex; 4/06/2007; 13:23; p.9



10 REINHARD MUSKENS

As is usual in modal logic, constraints on accessibility relations may be
stipulated to hold in order to get an interesting consequence relation. For
example, interaction between various modalities may come from interac-

tion postulates as in (Moortgat, 1997). Suppose that •, our default phrasal
composition, is considered to be short for •c and comes from an underlying
Rc, while another ternary relation R0 underlies an operator •0, which will
stand for the ‘head composition’ of Moortgat and Oehrle (1993) and Oehrle
(1998). Suppose, moreover, that the interaction postulate (10a) is adopted.
Then (10b) will be an immediate consequence.

(10) a. ∀k1k2k3k4[∃k[Rck1kk2 ∧ R0kk3k4] → ∃k[Rck1k3k ∧ R0kk4k2]]

b. (A • B) •0 C v A • (B •0 C)

When reasoning with such statements certain monotonicity properties are
all-important. It is easy to verify that the following hold.

(11) A v A′ entails 3mA v 3mA′

A v A′ entails 2mA v 2mA′

A v A′ entails A •m B v A′ •m B
B v B′ entails A •m B v A •m B′

A v A′ entails A u B v A′ u B
B v B′ entails A u B v A u B ′

We now have a νt domain with Boolean and modal operators, a notion
of consequence (inclusion), the means to restrict the class of models with
the help of postulates, and certain monotonicity properties. Enough to get
some work done; let the multimodal game begin.

3.1. trees and strings

It is the business of a grammar to connect strings with their meanings and
we shall have an operator ◦ that is directly defined in terms of strings. Its
underlying accessibility relation R◦ can be viewed as a partial concatenation
operation on the ν domain. If R◦kk1k2 is read as ‘k is the result of concate-
nating k1 and k2’, the following axioms (in which 1 is a type ν constant) are
natural.

(12) a. ∀kk′k1k2[[R
◦kk1k2 ∧ R◦k′k1k2] → k = k′]

b. ∀kk1k2k3[∃k′[R◦kk′k3 ∧ R◦k′k1k2] ↔ [∃k′[R◦kk1k
′ ∧ R◦k′k2k3]]

c. ∀kk′[R◦kk′1 → k = k′]

d. ∀kk′[R◦k1k′ → k = k′]

separating.tex; 4/06/2007; 13:23; p.10



SEPARATING SYNTAX AND COMBINATORICS 11

The first of these is a functionality requirement; the second expresses asso-
ciativity of concatenation; and the last two say that 1 is a unity element,
so that the operation becomes a monoid on the subset of the ν domain for
which it is defined.

Note that it need not be the case that all objects in the type ν domain
can be concatenated. Some objects may be tree nodes or other ‘resources’
for which concatenation is unnatural. Define e to be λk.k = 1. Then the
following are direct consequences of (12).

(13) a. (A ◦ B) ◦ C = A ◦ (B ◦ C)

b. A ◦ e v A

c. e ◦ A v A

Note that a νt term such as Aad ◦ kust ◦ Marie can be predicated of a string
k if and only if k is the concatenation of three substrings k1, k2 and k3

such that Aad(k1) (i.e. k1 is a token of the string type Aad), kust(k2), and
Marie(k3).

A natural relation connecting trees and strings is that of yield : string k1

is the yield of tree k2 if k1 may be read off from the leaves of k2 in the
usual way. We will take it that Ry represents a slight generalization of this
relation, with Ryk1k2 standing for ‘string k1 is the yield of tree k2 or k1 and
k2 are both strings and k1 = k2’. The following postulates are acceptable.?

(14) 3y(A • B) v 3yA ◦ 3yB TS1

3yA v A, if A ∈ Lex or A = e TS2

3y3yA v 3yA TS3

The first of these, TS1 (TS stands for ‘Tree-String’), says that the yield of
A •B is the yield of A concatenated with that of B. TS2 says that the yield
of a lexical expression, or the expression e, is just that expression itself??

and TS3, the usual 4 axiom for 3y, states that the yield of the yield of a
tree or string is just its yield.

Now consider the term in (15).

(15) 3y(Aad • (denkt • 3y(dat • (Marie • slaapt))))

The following derivation, which uses the monotonicity properties cited in
(11) several times, shows that (15) v (17).

? From here on we leave it to the reader to formulate underlying postulates in terms of
accessibility relations.

?? Here the set Lex is defined as consisting of all those νt terms that appear as sans serif

constants in our lexicon in Table IV below, minus vc and fin, which stand for features.

separating.tex; 4/06/2007; 13:23; p.11



12 REINHARD MUSKENS

Table III. Concretizations of abstract types.

abstract type syntax semantics abstract type syntax semantics

s νt t inf νt e(st)

qp νt st np νt e

cp νt st n νt e(st)

ip νt st

(16) 3y(Aad • (denkt • 3y(dat • (Marie • slaapt))))

3yAad ◦ 3y(denkt • 3y(dat • (Marie • slaapt))) TS1

Aad ◦ 3y(denkt • 3y(dat • (Marie • slaapt))) TS2

Aad ◦ 3ydenkt ◦ 3y3y(dat • (Marie • slaapt)) TS1

Aad ◦ denkt ◦ 3y3y(dat • (Marie • slaapt)) TS2

Aad ◦ denkt ◦ 3y(dat • (Marie • slaapt)) TS3

Aad ◦ denkt ◦ dat ◦ Marie ◦ slaapt etc.

(17) Aad ◦ denkt ◦ dat ◦ Marie ◦ slaapt

The type νt term in (17) is built from elements of Lex with the help of ◦ alone.
Let us call such terms ◦-terms. Suppose that, given some two-dimensional
lexicon with a syntactic component in the first dimension and semantics
in the second, 〈S1, S2〉 is a generated sign and that, given a fixed set of
postulates, S1 v S′

1 is valid. Then 〈S ′
1, S2〉 is called a derivable sign. A sign

〈S1, S2〉 such that S1 is a ◦-term will be called a string-meaning sign. We are
especially interested in the derivable string-meaning signs. A string-meaning
sign hypothesizes a direct relation between a certain string and one of its
possible semantic readings and the set of derivable string-meaning signs that
is obtained from any given lexicon constitutes a theory of the string-meaning
relation found in language.

Let us give an example. Suppose that a lexicon is given which makes (18)
a generated sign? and also suppose that the postulates in (14) are in force.

(18) 〈3y(Aad • (denkt • 3y(dat • (Marie • slaapt)))),∀j[Bajw0 → sleep mj]〉

(19) 〈Aad ◦ denkt ◦ dat ◦ Marie ◦ slaapt,∀j[Bajw0 → sleep mj]〉

Then the derivation in (16) shows that (19) is a derivable string-meaning
sign. It establishes a connection between the Dutch sentence Aad denkt dat

? This is not the case for our lexicon in Table IV, which turns (18) into a derivable

sign, not a generated sign.

separating.tex; 4/06/2007; 13:23; p.12



SEPARATING SYNTAX AND COMBINATORICS 13

Marie slaapt (‘Aad thinks that Marie is asleep’ ) and the semantic term
∀j[Bajw0 → sleep mj], which states that Marie is asleep in all worlds j that
are belief options (B) for Aad (a) in the actual world (w0).

Our focus on derivable string-meaning signs brings with it a special inter-
est in derivations such as the one in (16) in which the last line is a ◦-term.
In such derivations it is our task to get rid of all modal operators except ◦.
With only the TS postulates of (14) in force this task is trivial, but more
modal operators and more interaction postulates may bring more life into
the game, as we shall see below.

3.2. going dutch

In Table IV a lexicon for a fragment of Dutch is given that will be explained
in the present section. We will also give interaction postulates for some of
the modalities found in this lexicon. As the reader will already have noticed,
a repository of basic abstract types slightly larger than the one present in
Table I is in use now. The names of these abstract types are self-explanatory,
except perhaps qp, which is the category of questions (here: yes/no ques-
tions). Table III gives concretizations of these types in the syntactic and
semantic dimensions.?

The third column in Table IV gives 〈syntax, semantics〉 pairs, as before.
For convenience we abbreviate these with a mnemonic name in the first
column, so e.g. aad is short for 〈Aad, a〉. This in turn enables us to write
derived signs such as (20) that can then be worked out in each dimension.
For example, (20) turns out to be identical to the pair 〈(21a), (21b)〉.

(20) ?((een docent)λζ.(eenstudent)(mag(kussen ζ)))

(21) a. 3y31((een • student) • (((een • docent) • kussenvc) •0 magvc,fin))

b. λi.[∃y[teacher yi ∧ ∃z[student zi ∧ ∃j[Mji ∧ kiss zyj]]] ↔
∃y[teacher yw0 ∧ ∃z[student zw0 ∧ ∃j[Mjw0 ∧ kiss zyj]]]]

How (21a) connects to the Dutch question Mag een student een docent

kussen? (‘May a student kiss a teacher?’ ) and why (21b) is the Groenendijk-
Stokhof semantics for that question (Groenendijk and Stokhof, 1984) will
be seen shortly. For the moment let us just mention some of the modal
operators and conventions used in (21a) and in the rest of the lexicon. The
operators •, 3y and •0 (Oehrle’s ‘head adjunction’) we have met before. In
(21a) 31 is new and is used to enforce placement of the finite verb in verb
initial position, while vc and fin are terms of type νt that will act as features.

? As a minor point, note that type s now goes to t in the semantic dimension, not to
st as in the previous set-up. See the discussion of the assert sign below.

separating.tex; 4/06/2007; 13:23; p.13



14 REINHARD MUSKENS

Table IV. The Lexicon.

abbr. abstract type 〈syntax, semantics〉

aad np 〈Aad, a〉

ben np 〈Ben, b〉

marie np 〈Marie, m〉

student n 〈student, student〉

docent n 〈docent, teacher〉

elke n((np ip)ip) 〈λtλT.3sc(T2sc(elke • t)), λP ′Pλi∀x[P ′xi → Pxi]〉

een n((np ip)ip) 〈λtλT.T (een • t), λP ′Pλi∃x[P ′xi ∧ Pxi]〉

slaapt np ip 〈λt.(t • slaaptvc,fin), sleep〉

slapen inf 〈slapenvc, sleep〉

kust np(np ip) 〈λtλt′.(t′ • (t • kustvc,fin)), λxy.kiss yx〉

kussen np inf 〈λt.(t • kussenvc), λxy.kiss yx〉

helpt inf(np(np ip)) 〈λtt′t′′.(t′′ • (t′ • (t •0 helptvc,fin))), help〉

helpen inf(np inf) 〈λtt′.(t′ • (t •0 helpenvc)), help〉

mag inf(np ip) 〈λtt′.(t′ • (t •0 magvc,fin)), λPλxλi.∃j[Mji ∧ Pxj]〉

mogen inf inf 〈λt.(t •0 mogenvc), λPλxλi.∃j[Mji ∧ Pxj]〉

moet inf(np ip) 〈λtt′.(t′ • (t •0 moetvc,fin)), λPλxλi.∀j[Mji → Pxj]〉

moeten inf inf 〈λt.(t •0 moetenvc), λPλxλi.∀j[Mji → Pxj]〉

kan inf(np ip) 〈λtt′.(t′ • (t •0 kanvc,fin)), λPλxλi.∃j[Cji ∧ Pxj]〉

kunnen inf inf 〈λt.(t •0 kunnenvc), λPλxλi.∃j[Cji ∧ Pxj]〉

wil inf(np ip) 〈λtt′.(t′ • (t •0 wilvc,fin)), λPλxλi.∀j[Wxji → Pxj]〉

willen inf inf 〈λt.(t •0 willenvc), λPλxλi.∀j[Wxji → Pxj]〉

denkt cp(np ip) 〈λtt′.(t′ • (denktvc,fin • 3yt)), λpλxλi.∀j[Bxji → pj]〉

denken cp inf 〈λt.(denkenvc • 3yt), λpλxλi.∀j[Bxji → pj]〉

dat ip cp 〈λt.(dat • t), λp.p〉

assert ip s 〈λt.3y32t, λp.pw0〉

? ip qp 〈λt.3y31t, λpλi.pi ↔ pw0〉

We write AB1,...,Bn
for A u B1 u . . . u Bn if B1, . . . , Bn are such features, so

that magvc,fin is short for mag u vc u fin. Other modal operators that can
be found in the syntactic dimension of the lexicon are 32, which is related
to placement of the verb in second position, and the set 2sc and 3sc, used
for checking scope boundaries, as will be explained in 3.2.4 below.

3.2.1. The Semantic Dimension

Semantics is not the primary focus of this paper, but we have endeavored
to provide the signs generated by our lexicon with a reasonable second
dimension. The set-up largely follows that of Muskens (1995). In Table IV

separating.tex; 4/06/2007; 13:23; p.14



SEPARATING SYNTAX AND COMBINATORICS 15

predicates such as student (of type e(st)) and kiss (of type e(e(st))) have an
argument place of type s in addition to the usual type e argument places
they need. A term such as student m therefore is of type st and intuitively
denotes a set of possible worlds, the set of worlds in which Marie is a student.
It is only when this term is applied to a term of type s, e.g. the constant w0,
which stands for the actual world, that we get a term of type t; student mw0

intuitively meaning that Marie is a student (in the actual world). Quanti-
fiers also take the extra argument place into account. The modal verbs in
Table IV get a semantics that can be read as a transcription of Kripke style
modalities, much in the way in which syntactic operators •m and 3m were
defined using transcription of Kripke modalities. For example, the semantics
of mag, λPλxλi.∃j[Mji ∧ Pxj], leads to a translation of Aad mag slapen

(‘Aad may sleep’ ) of the form ∃j[Mjw0 ∧ sleep aj], which expresses that
in some world j, M -accessible from the actual world w0, Aad is sleeping.
Other modal verbs are provided with a similar semantics.? The attitude
verb denken (‘think’ ) gets a classical Hintikka-like analysis that was already
encountered in (18) and (19); the analysis of willen (‘want’ ) is comparable,
with a buletic accessibility relation W instead of the doxastic B.??

Note that in our lexicon the actual world w0 only comes into play in the
semantics of the special operators assert and ?. The first of these turns
an ip into a declarative sentence, the second turns an ip into a (yes/no)
question. While the semantics of assert just applies the semantics of its
argument to w0, ? is more interesting and embodies (the simplest part of)
the theory of questions developed in Groenendijk and Stokhof (1984). In
short, this theory holds that the extension of a yes/no question such as Is

Marie asleep? is the set of worlds in which Marie is asleep if she is indeed
asleep and the complement of this set otherwise. Similarly, if w0 is such that
some student may kiss some teacher, then (21b) will denote the set of worlds
in which that is also the case, otherwise it will denote the complement of
this set. In both cases the denotation is the intension of the correct (and
complete) answer.?

? In the present limited set-up we have ignored the context-dependency of modals such
as mag, moet and kan. See Kratzer (1977) for an argument why such context-dependency
is important and how it can be taken into account.

?? This is a very rough approximation of the semantics of willen. For reasons why it is
less than adequate, see Heim (1992). Heim gives a nice account of buletic modalities in
terms of conditionals, basing herself upon insights in Stalnaker (1984). Incorporating such
an account here would take us too far afield, however.

? One place in the lexicon were we have resorted to an obvious stop-gap is in the
semantics of helpen in Table IV. The meaning of this verb is just given as a constant
of the right type, (e(st))(e(e(st))), and no attempt at a more fine-grained account of its
lexical semantics has been made. This is because a reasonable account would certainly
involve the introduction of eventualities, which is no doubt feasible but would complicate
the theory in a way that is not compatible with its illustrative purpose.

separating.tex; 4/06/2007; 13:23; p.15



16 REINHARD MUSKENS

3.2.2. Verb Clusters

Let us move to the syntactic, phenogrammatical, component and give an
account of verb clustering in Dutch that is very much inspired by Oehrle
(1998) and Moortgat (1999). A verb cluster ‘package’ of inclusion postulates
as in (22) is adopted.

(22) (A • B) •0 C v A • (B •0 C) VC1

(A • B) •0 C v (A •0 C) • B VC2

Avc •0 Bvc v (B • A)vc VC3

The idea here is that a node marked vc always dominates a phrasal tree
with only verbs at its leaves and that the only way to get rid of •0 involves
clustering verbs with the help of VC3. Postulates VC1 and VC2 can be used
to rearrange the bracketing so that VC3 may apply. As an example, consider
the ip (23a), whose syntactic dimension is given in (23b).

(23) a. ((wil((helpen(kussen marie))ben))aad)

b. (Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

The only way to get rid of the two occurrences of •0 in (23b) is to rearrange
brackets so that the three verbs form a subtree and then to percolate vc

using VC3. This is carried out in (24). (In the last line of (24) the feature
vc gets dropped by the Boolean property A u B v A.?)

(24) (Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

(Aad • ((Ben • (Marie • (kussenvc •0 helpenvc))) •0 wilvc,fin)) VC1

(Aad • (Ben • ((Marie • (kussenvc •0 helpenvc)) •0 wilvc,fin))) VC1

(Aad • (Ben • (Marie • ((kussenvc •0 helpenvc) •0 wilvc,fin)))) VC1

(Aad • (Ben • (Marie • ((helpen • kussen)vc •0 wilvc,fin)))) VC3

(Aad • (Ben • (Marie • (wilfin • (helpen • kussen))vc))) VC3

(Aad • (Ben • (Marie • (wilfin • (helpen • kussen))))) Boole

Since VC3 also reorders verbs, the typical cross-serial dependency pattern of
verbal complexes in Dutch subordinate clauses results (compare (23a) with
the last line of (24)). For an example of the use of VC2, in which complements
are ‘extraposed’ to the right, consider (25a) and its syntactic dimension
(25b). The short derivation (26) extraposes the sentential complement of
denken and the subordinate clause Aad mag denken dat Ben slaapt (‘Aad

may think that Ben is sleeping’ ) appears.
? Note that the Boolean property allows us to get rid of the features vc and fin, but that

using a similar property to discard elements of Lex in general will not lead to rewriting to
a ◦-term. Remember that the latter were defined as those terms that could be obtained
from terms in Lex with the help of ◦ only and that vc and fin (and other feature terms in
a suitable extension of the fragment) are not in Lex.

separating.tex; 4/06/2007; 13:23; p.16



SEPARATING SYNTAX AND COMBINATORICS 17

(25) a. ((mag(denken(dat(slaapt ben))))aad)

b. (Aad • ((denkenvc • 3y(dat • (Ben • slaaptvc,fin))) •0 magvc,fin))

(26) (Aad • ((denkenvc • 3y(dat • (Ben • slaaptvc,fin))) •0 magvc,fin))

(Aad • ((denkenvc •0 magvc,fin) • 3y(dat • (Ben • slaaptvc,fin)))) VC2

(Aad • ((magfin • denken)vc • 3y(dat • (Ben • slaaptvc,fin)))) VC3

(Aad • ((magfin • denken) • 3y(dat • (Ben • slaapt)))) Boole

The last lines in (24) and (26) are not in the required ◦-term form yet, but
it will be possible to obtain such forms if these structures are embedded into
questions or declarative sentences. Let us move to a treatment of the latter.

3.2.3. Verb Initial, Verb Second

It is well-known that Dutch places the finite verb in second position in
declarative sentences while it places it in initial position in questions. This
can be modeled if finite verbs are allowed to leave their place and raise, as
in the following ‘raise’ package.

(27) Afin v e •↑ Afin ↑ 1

A • (B •↑ C) v (A • B) •↑ C ↑ 2

(A •↑ B) • C v (A • C) •↑ B ↑ 3

Postulate ↑ 1 allows a finite verb to go into a ‘raise mode’ •↑, leaving an
empty element behind, while the postulates ↑ 2 and ↑ 3 implement the idea
of raising. Clearly, the raising must also be brought to a halt again, for which
the following postulates can be used. V1 realizes the verb initial position,
V2 verb second.

(28) 31(A •↑ Bfin) v B • A V1

32((A • B) •↑ Cfin) v A • (C • B) V2

Let us see how this works. In (30) the syntactic dimension (29b) of (29a) is
taken and a term with the finite verb in second position is derived from it.

(29) a. (assert((wil((helpen(kussen marie))ben))aad))

b. 3y32(Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

separating.tex; 4/06/2007; 13:23; p.17



18 REINHARD MUSKENS

(30) 3y32(Aad • ((Ben • ((Marie • kussenvc) •0 helpenvc)) •0 wilvc,fin))

3y32(Aad • (Ben • (Marie • (wilfin • (helpen • kussen))))) (24)

3y32(Aad • (Ben • (Marie • ((e •↑ wilfin) • (helpen • kussen))))) ↑ 1

3y32(Aad • (Ben • (Marie • ((e • (helpen • kussen)) •↑ wilfin)))) ↑ 3

3y32(Aad • (Ben • ((Marie • (e • (helpen • kussen))) •↑ wilfin))) ↑ 2

3y32(Aad • ((Ben • (Marie • (e • (helpen • kussen)))) •↑ wilfin)) ↑ 2

3y32((Aad • (Ben • (Marie • (e • (helpen • kussen))))) •↑ wilfin) ↑ 2

3y(Aad • (wil • (Ben • (Marie • (e • (helpen • kussen)))))) V2

In the example a 32 operator was placed by the assert operator. Since
this operator must be gotten rid of and since the only way in which we
can get rid of it is by the use of V2, the finite verb wil must enter ‘raising
mode’. This is done by the application of ↑ 1. A series of applications of ↑ 2
and ↑ 3 then percolates the verb upwards until the structural conditions for
application of V2 are met. After application of V2 the resulting term can
easily be brought into ◦-term form using the TS package. In (31) we also
use the fact that e is a unit for ◦ in order to remove this element.

(31) 3y(Aad • (wil • (Ben • (Marie • (e • (helpen • kussen))))))

Aad ◦ wil ◦ Ben ◦ Marie ◦ e ◦ helpen ◦ kussen TS

Aad ◦ wil ◦ Ben ◦ Marie ◦ helpen ◦ kussen (13)

For an illustration of the V1 rule, a ◦-term could be derived from (21a), a
task we leave to the reader.

3.2.4. Reining in Quantifier Scope

The tectogrammatical part of Lambda Grammars is extremely flexible and
initially allows, for example, quantification into arbitrary contexts. One way
of reining this in might be to put extra requirements on tectogrammatic com-
bination, to recognize that signs can be classified according to their syntactic
and semantic properties and to use such classifications to constrain pointwise
application and abstraction. We shall not follow this path here but wish to
point out that for blocking certain scopings there are also possibilities in the
syntactic dimension. This is illustrated in the lexical entry for elke (‘each’ ),
which comes with a combination of a diamond 3sc and a box 2sc that will
act as a ‘lock and key’ pair, much as in other forms of type logical grammar
(Moortgat, 1997). In the syntactic term the box will be placed immediately
before the noun phrase, while the position of the diamond corresponds to
the place where ‘quantifying-in’ has taken place.

(32) a. assert((elke student)λζ.((een docent)(kust ζ)))

b. 3y323sc((een • docent) • (2sc(elke • student) • kustvc,fin))

separating.tex; 4/06/2007; 13:23; p.18



SEPARATING SYNTAX AND COMBINATORICS 19

c. ∀x[student xw0 → ∃y[teacher yw0 ∧ kiss yxw0]]

We see this illustrated in (32), where (32b) and (32c) are the syntactic and
the semantic dimensions of (32a) respectively. The 3sc diamond in (32b)
indicates the scope of the noun phrase (elke • student), which is marked with
a corresponding 2sc. As things stand, (32b) is not reducible to a ◦-term,
but this will change as soon as the 2sc box is allowed to travel upward. The
following scope package makes such upward travel possible.

(33) 2scA • B v 2sc(A • B) SC1

A • 2scB v 2sc(A • B) SC2

In (34) it is shown how two applications of SC bring the 2sc box adjacent
to its corresponding diamond, after which the general 3m2mA v A rule
may apply and both box and diamond can be gotten rid of. The rest of the
derivation can proceed in a way now familiar.

(34) 3y323sc((een • docent) • (2sc(elke • student) • kustvc,fin))

3y323sc((een • docent) • 2sc((elke • student) • kustvc,fin)) SC1

3y323sc2sc((een • docent) • ((elke • student) • kustvc,fin)) SC2

3y32((een • docent) • ((elke • student) • kustvc,fin)) (9)
...

een ◦ docent ◦ kust ◦ elke ◦ student

Note that the package in (33) only permits a 2sc box to percolate upwards
through an uninterrupted sequence of •s. This means that for a 2sc to
reach a 3sc there must be an uninterrupted path of conventional phrasal
combinations between them and the mechanism in fact functions as a check
as to whether such a path exists.

Such paths are not always in existence. In fact, we have used the 3y

operator to obstruct communication across clause boundaries. In (35a) an
attempt is made to universally quantify into a subordinate clause. (35a) has a
perfectly acceptable semantic dimension, but in phenogrammar any attempt
at deriving a ◦-term must fail. The 3y that was put on the subordinate
clause by the verb denkt intervenes between 2sc and 3sc and neither can be
dropped from the derivation. The treatment is reminiscent of the blocking
procedure in Morrill (1994).

(35) a. assert((elkedocent)λζ.(een student)(denkt(dat(kustmarie ζ))))

b. 3y323sc((een • student) •

(denktvc,fin • 3y(dat • (2sc(elke • docent) • (Marie • kustvc,fin)))))

separating.tex; 4/06/2007; 13:23; p.19



20 REINHARD MUSKENS

4. Conclusion

In this paper we have argued that a separation between combinatorics
and syntax, or, in Curry’s words, tectogrammar and phenogrammar, can
considerably simplify the architecture of modern categorial grammar, and
in particular its multimodal variant. Multimodal categorial grammar can
be split into a categorial part, whose logic we have assumed to be the
logic of the linear combinators here, and a multimodal part, whose logic
depends on the properties that are stipulated to hold for a collection of
underlying accessibility relations. An important difference between the two
levels is that semantics is dependent upon tectogrammar and not upon the
phenogrammatic level. All re-ordering and re-grouping of syntactic material
can take place in the dimension of phenogrammar and will be independent
from what happens in the semantic dimension.

How should the division of labour between the two levels be organized?
A reasonable rule of thumb seems to be that, since the abstract level is what
form and meaning have in common, in order to obtain greatest modularity it
should only contain that which is common to form and meaning. This rules
out the option of dealing with word order at the tectolevel, for example,
and in general this modularity assumption will drive us towards a rather
abstract, universal, and minimalistic conception of this level. But some
meaningful questions about what should go where remain. For example,
while we have assumed here that the resource sensitivity of language is
common to form and meaning and therefore tecto (modeled with the help
of a linearity constraint on lambda terms), there is some room to doubt
whether this is correct. Conceivably resource sensitivity should not go the
same way as word order and be modeled in the pheno dimension. Sharing of
variables is very common in semantics, after all. Other considerations may
go in the other direction and may enrich the tectolevel somewhat. Ultimately
the deciding factor is empirical, of course, and hinges on the question what
will give the simplest theory of the form-meaning relation in language.

Acknowledgements

I would like to thank the two anonymous referees for providing me with sets
of careful and detailed comments. Glyn Morrill also sent me some highly
useful remarks.

References

Ajdukiewicz, K.: 1935, ‘Die syntaktische Konnexität’. Studia Philosophica 1, 1–27. English
translation in Storrs McCall, ed., Polish Logic, 1920–1939, Oxford, 1967, 207–231.

Bar-Hillel, Y.: 1953, ‘A Quasi-arithmetical Notation for Syntactic Description’. Language

29, 47–58.

separating.tex; 4/06/2007; 13:23; p.20



SEPARATING SYNTAX AND COMBINATORICS 21

van Benthem, J.: 1986, Essays in Logical Semantics. Dordrecht: Reidel.
van Benthem, J.: 1991, Language in Action. Amsterdam: North-Holland.
Curry, H.: 1961, ‘Some Logical Aspects of Grammatical Structure’. In: R. O. Jakobson

(ed.): Structure of Language and its Mathematical Aspects, Vol. 12 of Symposia on

Applied Mathematics. Providence: American Mathematical Society, pp. 56–68.
Dalrymple, M., J. Lamping, and V. Saraswat: 1993, ‘LFG Semantics via Constraints’.

In: Proceedings of the Sixth Meeting of the European ACL. European Chapter of the
Association for Computational Linguistics.

de Groote, P.: 2001, ‘Towards Abstract Categorial Grammars’. In: Association for Com-

putational Linguistics, 39th Annual Meeting and 10th Conference of the European

Chapter, Proceedings of the Conference. Toulouse, France, pp. 148–155, ACL.
de Groote, P.: 2002, ‘Tree-Adjoining Grammars as Abstract Categorial Grammars’. In:

TAG+6, Proceedings of the Sixth International Workshop on Tree Adjoining Grammars

and Related Frameworks. pp. 145–150.
Dowty, D.: 1982, ‘Grammatical Relations and Montague Grammar’. In: P. Jacobson and

G. Pullum (eds.): The Nature of Syntactic Representation. Dordrecht: Reidel, pp.
79–130.

Dowty, D.: 1995, ‘Toward a Minimalist Theory of Syntactic Structure’. In: H. Bunt and
A. van Horck (eds.): Syntactic Discontinuity. The Hague: Mouton, pp. 11–62. (Paper
originally presented at a 1989 conference).

Groenendijk, J. and M. Stokhof: 1984, ‘Studies on the Semantics of Questions and the
Pragmatics of Answers’. Ph.D. thesis, University of Amsterdam.

Heim, I.: 1992, ‘Presupposition Projection and the Semantics of Attitude Verbs’. Journal

of Semantics 9, 183–221.
Johnson, M.: 1991, ‘Logic and Feature Structures’. In: Proceedings of the Twelfth

International Joint Conference on Artificial Intelligence. Sydney, Australia.
Kaplan, R. and J. Bresnan: 1982, ‘Lexical-Functional Grammar: a Formal System for

Grammatical Representation’. In: J. Bresnan (ed.): The Mental Representation of

Grammatical Relations. Cambridge, MA: The MIT Press, pp. 173–281.
Kratzer, A.: 1977, ‘What “must” and “can” must and can mean’. Linguistics and

Philosophy 1, 337–355.
Kurtonina, N.: 1995, ‘Frames and Labels: A Modal Analysis of Categorial Inference’. Ph.D.

thesis, Institute for Logic, Language and Computation, Amsterdam.
Lambek, J.: 1958, ‘The Mathematics of Sentence Structure’. American Mathematical

Monthly 65, 154–170.
Marcus, M., D. Hindle, and M. Fleck: 1983, ‘D-theory: Talking about Talking about

Trees’. In: Proceedings of the 21st ACL. pp. 129–136.
Moortgat, M.: 1997, ‘Categorial Type Logics’. In: J. v. Benthem and A. t. Meulen (eds.):

Handbook of Logic and Language. Elsevier, pp. 93–177.
Moortgat, M.: 1999, ‘Meaningful Patterns’. In: JFAK, Essays Dedicated to Johan van

Benthem on the Occasion of his 50th Birthday. Vossiuspers/Amsterdam University
Press. CD-Rom.

Moortgat, M. and R. Oehrle: 1993, ‘Adjacency, Dependency and Order’. In: P. Dekker
and M. Stokhof (eds.): Proceedings of the 9th Amsterdam Colloquium. Amsterdam:
ILLC/Department of Philosophy, University of Amsterdam, pp. 447–466.

Morrill, G.: 1994, Type Logical Grammar: Categorial Logic of Signs. Dordrecht: Kluwer.
Muskens, R.: 1995, Meaning and Partiality. Stanford: CSLI.
Muskens, R.: 2001a, ‘Categorial Grammar and Lexical-Functional Grammar’. In: M. Butt

and T. H. King (eds.): Proceedings of the LFG01 Conference, University of Hong Kong.
Stanford CA, pp. 259–279, CSLI Publications. http://cslipublications.stanford.
edu/LFG/6/lfg01.html.

separating.tex; 4/06/2007; 13:23; p.21



22 REINHARD MUSKENS

Muskens, R.: 2001b, ‘Lambda Grammars and the Syntax-Semantics Interface’. In: R. van
Rooy and M. Stokhof (eds.): Proceedings of the Thirteenth Amsterdam Colloquium.
Amsterdam, pp. 150–155.

Muskens, R.: 2003, ‘Language, Lambdas, and Logic’. In: G.-J. Kruijff and R. Oehrle (eds.):
Resource Sensitivity in Binding and Anaphora, Studies in Linguistics and Philosophy.
Kluwer, pp. 23–54.

Oehrle, R.: 1988, ‘Multi-Dimensional Compositional Functions as a Basis for Grammatical
Analysis’. In: R. Oehrle, E. Bach, and D. Wheeler (eds.): Categorial Grammars and

Natural Language Structures. Dordrecht: Reidel, pp. 349–389.
Oehrle, R.: 1994, ‘Term-Labeled Categorial Type Systems’. Linguistics and Philosophy

17, 633–678.
Oehrle, R.: 1995, ‘Some 3-Dimensional Systems of Labelled Deduction’. Bulletin of the

IGPL 3, 429–448.
Oehrle, R.: 1998, ‘Multi-Modal Type-Logical Grammar’. In: R. Borsley and K. Borjars

(eds.): Non-transformational Syntax. Blackwell. to appear.
Stalnaker, R.: 1984, Inquiry. Cambridge, MA: MIT Press.

separating.tex; 4/06/2007; 13:23; p.22


