
Logical Grammar: Introduction to Linear
Grammar

Carl Pollard

Department of Linguistics
Ohio State University

July 11, 2011

Carl Pollard Logical Grammar: Introduction to Linear Grammar

LG Overview

An LG for an NL is a sequent-style ND system that
recursively defines a set of ordered triples called signs,
each of which is taken to represent an expression of the NL.
Signs are notated in the form

a : A;B; c : C

where

a : A is a typed term of a HO theory (the pheno theory),
called the pheno term, or simply the pheno

B is a formula of a LL (the tecto logic) called the tecto
type, or simply the tecto

c : C is a typed term of a HO theory (the semantic theory),
called the semantic term, or simply the semantics

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Pheno Theory

There is a basic type s (strings (of phonological words))
The nonlogical constants are:

e : s, which denotes the null string
a large number of string constants which denote phenos of
syntactic words, such as it, rains, fido, barks, etc.
· : s→ s→ s, which denotes concatenation (written infix)

The nonlogical axioms are (here s, t, u : s):

` ∀stu.(s · t) · u = s · (t · u)
` ∀s.(e · s) = s
` ∀s.(s · e) = s

These axioms say that the set of strings forms a monoid
with concatenation as the associative operation and the
null string as the identity element.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Tecto Logic

This is (implicative intuitionistic propositional) LL, with basic
tecto types (i.e. atomic formulas) such as NP, It, S, N, etc.
The inventory of tecto types will be extended and refined as we
develop a fragment.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Semantic Theory

This is the theory of hyperintensional semantics (HS) already
introduced, augmented with:

nonlogical constants, for meanings of syntactic words
nonlogical axioms (analogous to Montague’s meaning
postulates)

Carl Pollard Logical Grammar: Introduction to Linear Grammar

LG Architecture

In its simplest form, an LG consists of:

Two kinds of axioms:

logical axioms, called traces
nonlogical axioms, called lexical entries

Two rule schemas:

Modus Ponens
Hypothetical Proof

A (very) few more rules will be added in due course.

Before considering the precise form of the axioms and rules, we
need to discuss the form of LF sequents.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

LG Sequents

A sign is called hypothetical provided its pheno and
semantics are both variables.
An LG sequent is an ordered pair whose first component
(the context) is a finite multiset of hypothetical signs, and
whose second component (the statement) is a sign.
The hypothetical sign occurrences in the context are called
the hypotheses or assumptions of the sequent.
We require that no two hypotheses have the same pheno
variable, and that no two hypotheses have the same
semantic variable.
So the contexts are actually just finite sets.

Notational convention: we often omit the types of tecto and
semantic terms when no confusion will result.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Trace Axiom Schema

Full form:

x : A;B; z : C ` x : A;B; z : C

Short form (when types of variables are known):

x;B; z ` x;B; z

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Two Lexical Entries to Get Started

` it; It; ∗ (dummy pronoun it)

Recall that ∗ is the logical constant of type T!

` λs.s · rains; It (S;λo.rain

Here o is of type T, and the constant rain is of type p.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Two LG Rule Schemas (Full Form)

Modus Ponens

Γ ` f : A→ D;B (E; g : C → F ∆ ` a : A;B; c : C
Γ,∆ ` f a : D;E; g c : F

Hypothetical Proof

Γ, x : A;B; z : C ` d : D;E; f : F
Γ ` λx.d : A→ D;B (E;λz.f : C → F

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Two LG Rule Schemata (Short Form)

These forms are used when the types of the terms are known.

Modus Ponens

Γ ` f ;B (E; g ∆ ` a;B; c
Γ,∆ ` f a;E; g c

Hypothetical Proof

Γ, x;B; z ` d;E; f
Γ ` λx.d;B (E;λz.f

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Some New Constants for Lexical Semantics

` p : e (Pedro)
` c : e (Chiquita)
` rain : p
` bray : p1

` donkey : p1

` farmer : p1

` own : p2

` beat : p2

` give : p3

` believe : e→ p→ p
` persuade : e→ e→ p→ p

Carl Pollard Logical Grammar: Introduction to Linear Grammar

An LG Proof

Here both axiom instances are lexical entries, and the only rule
instance is Modus Ponens.

Unsimplified:

` λs.s · rains; It (S;λo.rain ` it; It; ∗
` (λs.s · rains) it; S; (λo.rain) ∗

Simplified:

` λs.s · rains; It (S;λo.rain ` it; It; ∗
` it · rains; S; rain

As in MG, we use TLC term equivalences and meaning
postulates to simplify terms in intermediate conclusions before
using them as premisses for later rule instances.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

More Lexical Entries

` pedro; NP; p

` chiqita; NP; c

` λs.s · brays; NP (S; bray

` λst.s · beats · t; NP (NP (S; beat

` λs.that · s; S (S̄;λp.p

(Here S̄ is a new basic tecto for complementized finite clauses.)

` λst.s · believes · t; NP (S̄ (S; believe

Note: The finite verb entries are written to facilitate the verb
combining first with the subject, then with the complements, in
a derivation. This is the reverse of how things are usually done.
Reasons for this will be given later.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Another LG Proof

` λs.s · brays; NP (S; bray ` chiqita; NP; c
` chiqita · brays; S; bray c

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Yet Another LG Proof

` λst.s · beats · t; NP (NP (S; beat ` pedro; NP; p

λt.pedro · beats · t; NP (S; beat p ` chiqita; NP; c

pedro · beats · chiquita; S; beat p c

Note that we had to shrink this to tiny to fit it on the slide!
This approach of course has its limits.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Same Proof with Semantics Omitted

Alternatively, if we are not concerned about semantics, we can
sometimes overcome the space problem by omitting the
semantics components of the signs:

` λst.s · beats · t; NP (NP (S ` pedro; NP
λt.pedro · beats · t; NP (S ` chiqita; NP

pedro · beats · chiquita; S

Of course this approach also has its limits.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

An Oversized LG Proof

` λst.s · believes · t; NP (S̄ (S ` pedro; NP

` λt.pedro · believes · t; S̄ (S

` λs.that · s; S (S̄

` λs.s · brays; NP (S ` chiqita; NP

` chiquita · brays; S

` that · chiquita · brays; S̄

` pedro · believes · that · chiquita · brays; S

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Another Solution to the Space Problem

[1]:

` λst.s · believes · t; NP (S̄ (S; believe ` pedro; NP; p

` λt.pedro · believes · t; S̄ (S; believe p

[2]:

` λs.that · s; S (S̄;λp.p

` λs.s · brays; NP (S; bray ` chiqita; NP; c

` chiquita · brays; S; bray c

` that · chiquita · brays; S̄; bray c

[1] [2]
` pedro · believes · that · chiquita · brays; S; believe p (bray c)

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Now Let’s Do Some Linguistics: English NPs

To get started, we assumed tectotypes NP (for names) and
It (for dummy it), but this is too simple.
Even if we consider only third person singular noun
phrases, we still must account for these facts:

Besides dummy it, there is also dummy there, which has a
completely different distribution
Names and NPs formed by combining a determiner with a
common noun phrase, occur both as subject of verb and as
object of verb or preposition.
The same is true of the dummy pronouns.
But, except for nonhuman it, definite pronouns have
different forms, some of which (he, she) cannot be objects,
and others of which (her, him) cannot be subjects.
Only a few verbs, e.g. be and seem, allow dummy pronoun
subjects; and only a few, e.g. believe, allow dummy pronoun
objects.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Are Features Necessary?

In most syntactic frameworks (CCG, HPSG, LFG, MP)
problems of this kind are addressed through the use of
features, also called attributes.
For example, in HPSG, NPs specify values for the features
case and nform.
We could add features to LG as has been done for ACG
(de Groote and Maarek 2007) using dependent typing.
Here we explore a different approach proposed by Lambek,
that uses an order on the basic tectotypes.
We start by limiting our attention to sentences which
contain only finite verbs.
Later we’ll elaborate our approach to handle issues about
‘unrealized’ subjects of nonfinite verb forms (base forms,
infinitives, and participles) and of nonverbal ‘predicative’
expressions (predicative NPs, APs, and PPs).

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Ordering Basic Tectotypes

Lambek proposed ordering the basic syntactic types.
His proposal was in the context of pregroup grammar,
which is based on classical bilinear logic, but it works for
the tectotypes of LG also.
For example: we would like to say that the type of NPs
which can serve as both subjects and objects is a subtype
of the type of NPs that can serve as subjects.
The machinery for subtyping in HOL won’t work here.
Instead, we just assume a larger inventory of basic
tectotypes, and impose an order on them by fiat!
Notationally, we use the symbol ≤ for the imposed order on
basic tectotypes, and write A < B for A ≤ B and A 6= B.
We assert certain inequalities.
Then we define ≤ to be the smallest order on basic
tectotypes that includes all the asserted inequalities.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Ordering Basic Tectotypes to Analyze English Case

First we discard the type NP and replace it with the types
Nom (nominative), Acc (accusative), and Neu (neutral):

Nom is for NPs that can be nominative.
Acc is for NPs that can be accusative.
Neu is for NPs that can be either.

Next, we assert the inequalities

Neu < Nom
Neu < Acc

Then we generalize the Trace Axiom Schema as follows:
Generalized Trace Axiom Schema:

x;B; z ` x;B′; z (for B ≤ B′)

Finally, we revise the lexicon as described below.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Two Derived LG Schemas

These schemas (schematized over B ≤ B′) are very useful in LG
derivations. Their derivations are left as exercises.

Derived Rule Schema 1

Γ ` a;B; c
Γ ` a;B′; c

Theorem Schema

f ;B′ (E; g ` f ;B (E; g

Derived Rule Schema 2

Γ ` f ;B′ (E; g
Γ ` f ;B (E; g

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Lexicon Revised for the Analysis of Case

Semantics omitted since it is not relevant.

` pedro; Neu

` chiqita; Neu

` she; Nom

` he; Nom

` him; Acc

` her; Acc

` λs.s · brays; Nom (S

` λst.s · beats · t; Nom (Acc (S

` λst.s · believes · t; Nom (S̄ (S

Carl Pollard Logical Grammar: Introduction to Linear Grammar

How Neutral NPs Get Case

This derivation uses Derived Rule Schema 1 twice:

` λst.s · beats · t; Nom (Acc (S
` pedro; Neu
` pedro; Nom

` λt.pedro · beats · t; Acc (S
` chiquita; Neu
` chiquita; Acc

` pedro · beats · chiquita; S

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Determiners and Common Nouns

As is usual in CG, we take the type N of common nouns to
be a basic tectotype.

` donkey; N

` farmer; N
Then, since noun phrases like a donkey share with names
the ability to serve as either subjects or objects, we analyze
determiners as having the tectotype N (Neu:

` λs.every · s; N (Neu

` λs.a · s; N (Neu
Then we can derive, e.g.

` λs.a · s; N (Neu ` donkey; N
` a · donkey; Neu

Later when we deal with the semantics of quantificational
noun phrases, we’ll revise this analysis.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Attributive Adjectives

We distinguish between attributive adjectives, which
modify nouns, and predicative adjectives, which are
usually introduced by a copula (form of the auxiliary verb
be) or other ‘linking’ verbs (such as become).
Although many adjectives appear both ways, some (such as
asleep) can only be predicative, while others (such as
former) can only be attributive.
Adapting the usual CG analysis of modifiers, we analyze
attributive adjectives as having tectotype N (N:

` lazy; N (N

` former; N (N
Then we can analyze common noun phrases like:

` λs.lazy · s; N (N ` donkey; N
` lazy · donkey; N

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Predicative Adjectives

As a first approximation, we analyze predicative adjectives
with a new basic tectotype PrdA:

` lazy; PrdA

` asleep; PrdA

We can’t do anything with these yet, but we are about to
fix that.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Introducing Existential Be

We distinguish between existential be, as in there is a
donkey, and predicational be, as in Chiquita is lazy.
Existential be requires a dummy there subject and a noun
phrase complement which is subject to certain semantic
constraints (roughly, it must be indefinite):

` λst.s · is · t; There (Neu (S

Optionally, existential be can take an additional
‘predicative’ complement. For now, we put on hold exactly
what we mean by ‘predicative’, and pretend that the only
predicative expressions are PrdAs:

` λstu.s · is · t · u; There (Neu (PrdA (S

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Introducing Predicational Be

As a first approximation, predicational be takes a noun
phrase subject, which for finite forms of be must be
nominative, and a predicative complement. Continuing to
pretend that the only predicatives are PrdAs, we posit:

` λst.s · is · t; Nom (PrdA (S

But there is a problem. Some PrdAs demand a dummy it
subject, while most require a ‘normal’ nondummy subject:

1. Chiquita/He/She is lazy/asleep.

2. ∗ Chiquita/He/She is rainy.

3. It is rainy.

4. ∗ It is lazy/asleep. (where it is not referential)

How does the copula know what kind of subject its
predicative complement expects?

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Predicative Adjectives ‘Care’ about their Subjects

Even though a predicative adjective cannot directly take a
subject, if a copula takes it as a complement, it ‘tells’ the
copula what kind of subject to take.
We analyze this by treating predicative adjectives
tectogrammatically (and semantically) as functors, but
phenogrammatically as just strings:

` rainy; It (PrdA

` obvious : S̄ (PrdA

` lazy : Nom (PrdA
The ‘Nom’ in the last entry is not quite right, but it will
take some development to see why.
We will analyze nonfinite verb phrases (infinitivals,
base-form verb phrases, and participial phrases) in
essentially the same way, but with PrdA replaced by other
basic tecto-types (Inf, Bse, Prp, Psp, and Pas).

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Predicational Be, Take Two

Now, we replace our old lexical entry for predicational is:

` λst.s · is · t; Nom (PrdA (S

with the following schema:

` λst.s · is · t;A ((A (PrdA) (S

where A is a metavariable that ranges over tectotypes.
This analysis corresponds to what is called raising to
subject (RTS) in other frameworks.
In essence, is says: ‘I don’t care what my subject is, as
long as my complement is happy with it’.
We can use the same trick to analyze other verbs (and
nonverbal predicatives) traditionally analyzed in terms of
RTS (e.g. modals and other auxiliaries, seem, tend, etc.).

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Problems with Raising (1/2)

There are other problems, though: there are some verbs,
traditionally called raising to object (RTO) verbs, that
feel the same way about their object as RTS verbs feel
about their subject, for example considers:

1. Pedro considers it rainy.

2. Pedro considers that Chiquita brays obvious.

3. Pedro considers Chiquita/her/∗she lazy.

For such verbs, if the object is a pronoun, it has to be
accusative.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Problems with Raising (2/2)

So if we try to analyze RTO on a par with RTS with a
lexical entry like

` λstu.s · considers · t · u; Nom (A ((A (PrdA) (S

it will interact badly with the lexical entry

` lazy : Nom (PrdA

to overgenerate things like
∗ Pedro considers she lazy.
while failing to generate the correct
Pedro considers her lazy.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Fixing the Undergeneration Problem with Raising (1/2)

The undergeneration problem arises with RTO because the
lexical entries for predicative adjectives like lazy (and for
nonfinite verbs like bray) are demanding Nom subjects.
This works when the ‘unrealized’ subject is ‘raised’ to the
subject of a finite verb (such as is), but not when it is
‘raised’ to object, where an accusative pronoun is needed.
An easy fix would be to add a second entry with tecto type
Acc (PrdA (and likewise for nonfinite verb forms).
But we can avoid doubling up all these lexical entries if
instead we eliminate all the Nom (PrdA entries and
replace them with entries with tectotype PRO (PrdA,
where PRO is a new basic tectotype ordered as follows:

Nom < PRO
Acc < PRO

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Fixing the Undergeneration Problem with Raising (2/2)

Then in the lexicon we need only list

` lazy; PRO (PrdA

From this we can derive the signs needed as complements to
is and considers, respectively, by Derived Rule Schema 2:

` lazy; Nom (PrdA

` lazy; Acc (PrdA

Note that while Neu is overspecified between Nom and
Acc, PRO is underspecified between Nom and Acc.
Cf. Chomsky’s PRO, which is supposed to occur in
non-case-assigned positions such as subject of infinitive.
But our PRO is just a tectotype: there aren’t any signs
which have this type.
And so (as in HPSG but unlike GB or MP), predicatives
and nonfinite VPs don’t actually ‘have’ subjects.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Fixing the Overgeneration Problem with Raising (1/2)

As it stands, our analysis overgenerates:

1. ∗ Pedro considers she lazy.

2. ∗ Her is lazy.

because the As in the lexical schemas for is and considers
can be instantiated (inter alia) as Nom or Acc.
is doesn’t care what its subject is as long as its complement
is happy with it, and considers doesn’t care what its object
is as long as its complement is happy with it.
But is should be insisting that if its subject is a
(nondummy) NP, then it has to be nominative.
And considers should be insisting that if its object is a
(nondummy) NP, then it has to be accusative.
We’ll solve these problems by limiting the possible
instantiations of the type variable A in the lexical entries,
in different ways.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Fixing the Overgeneration Problem with Raising (2/2)

We add two new basic tectotypes NOM and ACC.
NOMs are things that can be subjects of finite RTS verbs.
ACCs are things that can be objects of RTO verbs.
Next we add more tectotype inequalities:

Nom < NOM
It < NOM
There < NOM
Acc < ACC
It < ACC
There < ACC

And finally, we revise the lexical schemas for is and
considers as follows:

` λst.s · is · t;A ((A (PrdA) (S (A ≤ NOM)

` λstu.s · considers · t · u; Nom (A ((A (PrdA) (S
(A ≤ ACC)

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Subjects of Nonfinite Verbs (1/2)

As we’ve seen, the type requirement for subjects of
nonfinite verbs whose finite counterpart would require a
Nom is PRO.
And the type requirement for subjects of finite RTS verbs
is NOM.
But what is the type requirement for the subject of a
nonfinite RTS verb, such as be or to? Evidently, there is
none! So we can write lexical schemas with unrestricted
type variables such as:

` λs.be · s; (A (PrdA) (A (Bse

` λs.to · s; (A (Bse) (A (Inf
Notice that in these lexical entries, the tectotypes are
written with the complements as the intial arguments and
the subject (which cannot be taken directly as an
argument) last, as in HPSG.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Subjects of Nonfinite Verbs (2/2)

This same practice is followed for all nonfinite verbs (and
complement-taking nonverbal predicatives). Compare:

` λst.s · beats · t; Nom (Acc (S

` λs.beat · s; Acc (PRO (Bse
Although verbs (other than to) don’t have infinitive forms,
roughly that effect results from syntactic combination:

λs.to · s; (A (Bse) (A (Inf
λs.to · s; (PRO (Bse) (PRO (Inf ` bray; PRO (Bse

` to · bray; PRO (Inf

Here for expository purposes we pretend that instantiation
of a schema is a unary rule (of course it isn’t really.)

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Introducing Predicatives

Besides predicative adjectives (A (PrdA), the existential
copula that takes an additional complement besides the NP
also allows three other kinds of complements: predicative
PPs (A (PrdP), present participials (A (Prp), and
passive participials (A (Pas).
And the predicational copula allows all of these, as well as
predicative NPs (A (PrdN),
So we propose two new basic tectotypes PrdnN (non-
nominal predicative) and Prd (predicative), and assert:
PrdA < PrdnN, PrdP < PrdnN, Prp < PrdnN,
Pas < PrdnN, PrdN < Prd, and PrdnN < Prd.
Then revise the schema for the predicational copula to:
` λst.s · is · t;A ((A (Prd) (S (A ≤ NOM)
And revise the two-complement existential copula to:
` λstu.s · is · t · u; There (Neu (PrdnN (S

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Two Problems with Predicatives

So far we have said nothing about where predicative NPs
and PPs come from. This leads into the topic of
nonlogical rules, which we will come back to.
The other problem is more straightfoward: now that the
predicative copula is looking for predicatives in general,
how can it take as complement specific kinds of
predicatives such as predicative adjectives?
To make it concrete, how to we parse she is lazy?
It turns out that the easy way is to first derive a new rule
schema, the LG-ificiation of a derived rule schema of LL
called hypothetical syllogism (in-class exercise).

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Toward the Next Exercise

Up to now we’ve pretended the only non-dummy NPs are the
third-singular ones. But of course this is not the case. The
purpose of this exercise is to elaborate the order of basic
tectotypes (for things that can be subjects or objects of verbs)
to account for the basic facts about English verb agreement and
its interaction with case.

To do this exercise, first recall what the intuitive meanings are
of the types we have posited so far:

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Background for Exercise: Review of NP-Tectotypes

NOM: things that can be subjects of finite RTS verbs (including finite
auxiliaries as well as verbs like seems and tends)

ACC: things that can be objects of RTO verbs (such the version of
believe that takes an infinitive complement)

Nom: things that can be subjects of finite verbs which disallow
dummy subjects (i.e. verbs where the subject has a semantic role)

Acc: things that can be objects of verbs which disallow dummy
objects (i,e, verbs where the object has a semantic role)

PRO: the unrealized subject of nonfinite verbs whose finite
counterparts would require a Nom subject

There: dummy pronoun there, the subject of the existential copula

It: dummy pronoun it, the subject (inter alia) of weather predicates

Neu: things which can be either subjects or objects

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Background for Exercise: English Verb Inflection

With exceptions noted below, English verbs have three
finite forms (pres-3rdsng, pres-non-3rdsng, and past), all
corresponding to result type S), and three nonfinite forms:
base-form (Bse), present participle (Prp), past-participle
(Psp—here we simplify by ignoring passive participles).
Modal auxiliaries have just one form, which is finite.
Following GPSG and HPSG, we analyze infinitive to as the
only verb which is listed in the lexicon as infinitive.
The copula is unique in having distinct present forms am
(1stsng) and are (non-3rdsng other than 1stsng).
The copula is unique in having two past forms was (for
1stsng and 3rdsng) and were (similar to are).
The tense of finite forms is analyzed in the semantics, and
not reflected in the tectotype.
The kinds of subject a finite verb takes is reflected by the
argument type A of the tectotype A (. . . (S.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Exercise (1/2)

Elaborate the order of NP-types just enough to account for the
basic agreement facts. Elaboration can consist of adding new
types, splitting types we already have into two or more types,
and asserting new inequalities.
Your analysis should be presented in four parts:

1. List all the NP-types you will use.
2. Assert inequalities (as few as possible: remember you can

deduce more inequalities from reflexivity and transitivity).
3. Specify for each of the following words what tectotype it is

lexically assigned: the definite pronouns: I, you, he, she, it,
they, we, me, him, her, us, and them; the dummies it and
there; the name Pedro; and the bare-plural NP donkeys, as
in donkeys bray.
Group together words which have the same tectotype.

Carl Pollard Logical Grammar: Introduction to Linear Grammar

The Exercise (2/2)

4. Specify for each of the following ‘argument positions’ which
of your types is required for it:

1. subject of modal verb can

2. subject of am

3. subject of is

4. subject of are

5. subject of was

6. subject of base form bray

7. subject of brays

8. subject of finite bray

9. subject of past form brayed

10. subject of rains

11. subject of existential copula

12. object of RTO verb believe

13. object of bites

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Hints

Not all of your types will show up in both 3 and 4.
No two of the items in part 4 should have the same type.
Gender is not syntactically relevant; nor are person and
number for accusatives.
To simplify, analyze the kind of English where dummy
there always has singular agreement even if the postcopular
NP is plural.
Don’t be misled by the fact that you is semantically plural!
Instead, see what words it has the same distribution as.
I did it with 15 types, only 7 more than we started with
(and many fewer than the result of multiplying out
combinations of traditional ‘features’).
Of course your answer doesn’t have to be the same as mine!

Carl Pollard Logical Grammar: Introduction to Linear Grammar

Next Up

Nonlogical Rules
Quantifier Scope
Unbounded dependencies

Carl Pollard Logical Grammar: Introduction to Linear Grammar

