
Logical Grammar: Course Introduction

Carl Pollard

Department of Linguistics
Ohio State University

July 4, 2011

Carl Pollard Logical Grammar: Course Introduction



What this Course is About

Using basic tools of mathematical logic to construct
theories about natural language (NL).
More specifically: we use logic to write formally precise
grammars of an especially simple kind, called linear
grammars, focusing (for this course) on syntax,
semantics, and the interface between them.

Carl Pollard Logical Grammar: Course Introduction



Linear Grammar

Linear Grammar (LG) is a practical framework for linguistic
analysis influenced by three traditions in linguistic theory:

categorial grammar (CG), a kind of syntactic analysis
founded by Joachim Lambek (late 1950s) that treats lexical
entries and grammar rules, respectively, as axioms and
inference rules of a proof theory.
Montague semantics, founded by Richard Montague
(late 1960s), influenced by earlier philosophical logicians
Frege (1892), Carnap (1947), and and Kripke (1963). Uses
type theory (Church 1940, Henkin 1950) to analyze
sentence meanings.
Dynamic semantics, founded by Kamp (DRT, 1981),
Heim (FCS, 1982), and others based on philosophical ideas
of Stalnaker and Lewis (1960s and 1970s) about the role of
context in the interpretation of multi-sentence discourses.

Carl Pollard Logical Grammar: Course Introduction



Sources of Linear Grammar (1/2)

LG is a synthesis based on recent developments in all three of
these traditions:

curryesque CG, which analyzes syntax using linear logic
(Girard 1987). Inspired by programmatic ideas of Curry
(1961) and technical innovations of Oehrle (1994).
Includes de Groote’s (2001) abstract categorial
grammar (ACG) and Muskens’ (2003, 2007) lambda
grammar.
hyperintensional semantics, a kind of type-theoretic
semantics which proposes a more fine-grained analysis of
sentence meaning than Montague’s.
An early form was Thomason’s (1980) intentional
semantics. More recent avatars are Muskens (2005) and
Pollard (2008).

Carl Pollard Logical Grammar: Course Introduction



Sources of Linear Grammar (2/2)

Type-theoretic dynamic semantics, which extends
Montague’s type-theoretic methods to analyze the kinds of
discourse phenomena analyzed by DRT and FCS.
Muskens (1994, 1996) pioneered this approach. More recent
proposals are Beaver (2001), de Groote (2006), van Eijck
and Unger (2010), and Martin and Pollard (2010, 2011).

Carl Pollard Logical Grammar: Course Introduction



The Tools

The logical tools employed will all be introduced or reviewed in
the course. They are:

A certain style of proof theory, namely sequent-style
natural deduction.
Two simple kinds of propositional logic, namely:
implicative intuitionistic linear propositional logic,
here just called linear logic (LL), and
positive intuitionistic propositional logic (PIPL)

typed lambda calculus (TLC), an elaboration of PIPL
higher order logic (HOL), also called type theory
(here these two terms are more or less synonyous), an
elaboration of TLC.

Carl Pollard Logical Grammar: Course Introduction



Tentative Syllabus (1/3)

Suggested readings and these slides are at:
http://www.coli.uni-saarland.de/courses/logical-grammar

Day 1 (Monday, July 4):
Course Overview; Sequent-Style Natural Deduction for LL
and PIPL
Slides: introsl.pdf, ndsl.pdf
Reading: nd.pdf
Suggested background reading: crouch-genabith.pdf

Day 2 (Wednesday, July 6):
Typed Lambda Calculus and the Curry-Howard
Correspondence
Slides: tlcsl.pdf
Reading: tlc.pdf

Carl Pollard Logical Grammar: Course Introduction

http://www.coli.uni-saarland.de/courses/logical-grammar


Tentative Syllabus (2/3)

Day 3 (Friday, July 8):
Higher Order Logic and Hyperintensional Semantics
Slides: holsl.pdf, hypersl.pdf
Readings: hol.pdf, pollard2008.pdf

Day 4 (Monday,July 11):
Linear Grammar Basics: Lexicon, Rules, Traces, Case,
Modification and Predication
Slides: lgsl.pdf
Reading: mihalicek-pollard.pdf, pred.pdf
Suggested background reading: oehrle1994.pdf,
degroote-acg.pdf, muskens-acl13.pdf, muskens2007.pdf

Carl Pollard Logical Grammar: Course Introduction



Tentative Syllabus (3/3)

Day 5 (Wednesday, July 13):
Linear Grammar Topics: Dummies, Raising, Verb
Inflection, Agreement
Slides: lgsl.pdf (continued)
Reading: control.pdf

Day 6 (Friday, July 15):
More Linear Grammar Topics: Nonlogical Rules,
Quantifier Scope, Control, Tough-Movement
Slides: morelgsl.pdf
Reading: udc.pdf

Carl Pollard Logical Grammar: Course Introduction



Intellectual Background of LG

The main ideas that LG is based on are drawn from the
following people:

Haskell Curry (a mathematical logician)
Joachim Lambek (a mathematician)
Richard Montague (a philosophical logician)
Richard Oehrle (a theoretical and computational linguist)

Carl Pollard Logical Grammar: Course Introduction



Curry

In a 1948 lecture, published in expanded form in 1961, Curry
proposed that a linguistic expression should be analyzed as
consisting of:

1. a phenogrammatical component: specifies the
expression’s superficial form

2. a tectogrammatical component: specifies the the
expression’s combinatory potential

3. a semantic component: specifies the expression’s meaning

Carl Pollard Logical Grammar: Course Introduction



The Phenogrammatical Component

usually abbreviated to just pheno

Corresponds roughly to what computer scientists
sometimes call concrete syntax

Also corresponds roughly to what linguists call
phonology, broadly construed to include word order and
nonsegmental (or prosodic) aspects
relates to what the expression sounds like (or in the case of
sign language, looks like)

Carl Pollard Logical Grammar: Course Introduction



The Tectogrammatical Component

usually abbreviated to just tecto

Corresponds roughly to what computer scientists
sometimes call abstract syntax

Also corresponds roughly to what linguists call syntactic
category.
Relates to what other expressions the expression can
combine with, and what results from the combination

Carl Pollard Logical Grammar: Course Introduction



Lambek

Invented his syntactic calculus in 1958, later called the
Lambek calculus.
A Lambek calculus is a grammar written in the form of a
logical proof system.
The role of linguist’s trees is taken over by proof trees.
Words correspond to axioms.
Grammar rules are replaced by logical inference rules.
Well-formed linguistic expressions correspond to theorems
of the proof system.
Unlike earlier forms of categorial grammar (CG) due to
Ajdukiewicz and Bar-Hillel), the Lambek calculus makes
(crucial!) use of the rule of hypothetical proof, which we
will explain soon.

Carl Pollard Logical Grammar: Course Introduction



Montague (1/2)

In late 1960’s, originated a style of CG influenced by ideas
drawn from the philosophical logicians Gottlob Frege,
Rudolph Carnap, Saul Kripke, and others.
A Montague grammar recursively defines a set of triples,
each of which consists of a word string, a syntactic
type, and a typed lambda calculus term (TLC) denoting a
meaning (often a function).
In retrospect, we can relate Montague’s string to Curry’s
pheno, and Montague’s syntactic type to Curry’s tecto.
Some of the triples (lexical entries) are given, while the
rules of the grammar produce new triples from old ones.
Unlike Lambek calculus, Montague’s CG was primitive
(like Ajdukiewicz-Bar Hillel CG) in the sense of not having
a rule like Hypothetical Proof.

Carl Pollard Logical Grammar: Course Introduction



Montague (2/2)

Each rule include ‘recipes’ specifying how to construct the
string and meaning of a new expression, respectively, from
the strings and meanings of the expression’s immediate
constituents.
The operation involved in constructing the new
expression’s string is usually concatenation.
The operation involved in constructing the new
expression’s meaning is usually function application.
On the semantic side, this last point is a version of Frege’s
notion of semantic compositionality.

Carl Pollard Logical Grammar: Course Introduction



Oehrle

In the mid-to-late 1980’s, categorial grammarians (such as
van Benthem, Moortgat, Morrill) had the idea of
combining Lambek calculus with Montague grammar.
Within this setting, Oehrle introduced three technical
innovations.
The first was to replace the Lambek calculus with a
simpler logic, namely linear logic.
The second was to allow phenos to be not just strings, but
also (possibly higher-order) functions over strings.
The second innovation involved using TLC terms to denote
phenos (not only for meanings as in Montague grammar).
Oehrle’s third innovation was a particular technique for
analyzing quantified noun phrases (‘quantifier lowering via
β-reduction’), which we’ll explain in due course.

Carl Pollard Logical Grammar: Course Introduction



A First Glimpse of Linear Grammar (1/2)

We write an LG to cover a fragment of an NL (as in
Montague grammar).
An LG recursively defines a set of triples called signs.
Each sign specified by the LG is taken to represent one of
the expressions of the NL in question.
The three components of each sign correspond to the
pheno, tecto, and meaning of the expression it represents.
Some of these triples, called lexical entries, represent
(syntactic) words.
The set of lexical entries, called the lexicon is given ‘in
advance’ and forms the base of the recursive definition.

Carl Pollard Logical Grammar: Course Introduction



A First Glimpse of Linear Grammar (2/2)

The recursive part of the definition is in the form of a few
(at first, just two) rules, with whose help we can analyze
more complex expressions.
The lexical entries and rules can be thought of,
respectively, as axioms and inference rules of a
natural-deduction proof system.
The signs specified by the grammar can be thought of as
the theorems proved by the proof system.

Carl Pollard Logical Grammar: Course Introduction



LG Signs

LG signs are notated in the form

` φ; τ ;σ

where:

φ is a term in a typed lambda calculus (more precisely, a
higher-order logical theory) called the pheno calculus. A
pheno term is interpreted as a string of phonological words,
or as a higher-order function over such strings.
τ is a formula of linear logic, the tecto type of the sign.
Intuitively, a tecto type can be thought of as the name of a
syntactic category.
σ is a term in a typed lambda calculus (again, more
precisely, a higher-order theory) called the semantic
calculus. A semantic term is interpreted as an entity or a
proposition, or as a higher-order function over such things.

Carl Pollard Logical Grammar: Course Introduction



A Simple LG Lexical Entry

` pig; N; pig

In this lexical entry:

pig is a constant (of type s) of the pheno calculus, which
denotes a string (of length 1) whose only element is the
phonological word pIg/.
N is a (basic) tectotype, namely the type of nouns.
pig is a constant (of type e → p) of the semantic calculus,
which denotes a certain property, namely the function that
maps any entity to the proposition that that entity is a pig.

Carl Pollard Logical Grammar: Course Introduction



Traces (1/2)

Besides lexical entries, which will play the role of
nonlogical axioms when we think of a grammar as a
proof system, there are also logical axioms, called traces.
Traces play an important role in the analysis of scope of
quantificational NPs, and also in the analysis of
constructions usually analyzed in terms of movement in
MGG (such as constituent questions, relative clauses, and
clefts).
Intuitively, a trace can be thought of as a ‘hypothetical’
syntactic consituent.

Carl Pollard Logical Grammar: Course Introduction



Traces (2/2)

Here’s a typical trace (more specifically, an NP-trace):

s; NP;x ` s; NP;x

Here:

s is a variable (of type s) of the pheno calculus, which
denotes a hypothetical string
NP is a (basic) tectotype, namely the type of noun phrases
x is a variable (of type e) of the semantic calculus, which
denotes a hypothetical entity.

Carl Pollard Logical Grammar: Course Introduction



LG Rules

Besides axioms (lexical entries and traces), an LG also has
rules.
In its simplest form, LG has only two rules, corresponding
to the two inference rules of linear logic, Modus Ponens
and Hypothetical Proof.
Modus Ponens corresponds roughly to Merge in MGG: it is
used to combine two signs, a ‘function’ sign and its
‘argument’.
Hypothetical Proof corresponds roughly to Move in MGG:
it is used to ‘discharge’ a hypothetical sign, similar to
‘binding a trace with an empty operator’ in MGG.
We postpone writing the rules down till after we introduce
the relevant technical tools.

Carl Pollard Logical Grammar: Course Introduction


