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What was Wrong with Montague Semantics? (1/2)

Montague (late 1960s) was first to systematically apply the
methods of mathematical logic to the analysis of NL meaning.
Of course there were some shortcomings:

Insufficiently fine-grained meaning distinctions, arising
from modelling of meanings as intensions (functions whose
domain is the set of worlds).
Solution: hyperintensional semantics, e.g. Thomason
1980, Muskens 2005, Pollard 2008. We’ll look at the last of
these today.
Inconvenient interface to semantics, complicated the
analysis of quantification and unbounded dependencies.
Solution: Replace Montague’s primitive CG by a
logic-based CG with hypothetical reasoning, such as
Lambek calculus or linear grammar. We’ll focus on this
next week.
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What was Wrong with Montague Semantics? (2/2)

Didn’t handle cross-sentential anaphora, donkey anaphora,
novelty condition on indefinites, presupposition.
Solution: dynamic semantic approaches such as DRT
(Kamp 1981), FCS (Heim 1982), DMG (Groenendijk and
Stokhof 1990).
More recent dynamic approaches share with Montague
semantics the advantage of being formulated entirely
within HOL (Muskens 1994 and 1996, Beaver 2001, de
Groote 2006).
Combining dynamic semantics with hyperintensional
semantics is the subject of ongoing research (Martin and
Pollard 2010, 2011, in preparation).
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Sources of Montague Semantics: Frege 1892

A (NL) expression has a sense (which doesn’t depend on
how things are) and a reference (which does).
For a declarative sentence, the sense is a proposition and
the reference is that proposition’s truth value.
The sense of an expression is a function of the senses of its
syntactic constituents.
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Sources of Montague Semantics: Carnap 1947

Worlds are complete state descriptions, i.e. sets of
closed formulas in a certain logical language.
An expression’s sense is an intension, i.e. a function
mapping each world to the expression’s reference at that
world.
Thus propositions (intensions of sentences) map worlds to
truth values.
So propositions are essentially sets of worlds.
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Kripke 1963

Worlds are unanalyzed primitives (contra Carnap and contra
Kripke 1959),
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Montague Grammars

A Montague grammar defines a relation between word
strings and intensions.
This relation is defined by a primitive categorial grammar
(‘primitive’ = no hypothetical proof).
More precisely: the grammar defines a set of triples of
(1) a string, (2) a syntactic type, and (3) an intension.
Some of the triples are given in advance (the lexicon).
Each grammar rule is equipped with:

a recipe for combining (usually by concatenation) the
strings of the constituents to get a new string, and
a recipe for combining the intensions of the constituents
(usually by function application) to get a new intension.
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The Types of Montague’s Semantic Theory

The theory was written in an idiosyncratic higher-order
language (no proof theory) called IL.
But Gallin (1975) showed how to translate IL into Henkin’s
(1950) HOL, so we’ll ignore IL and pretend that MS was
written in HOL all along.
Besides the truth value type t (Henkin’s o) provided by the
logic, there are two basic types:

e (Henkin’s ι), the type of entities
w (Montague’s s), the type of worlds. (Here inspired by
Kripke 1963, not Carnap or Kripke 1959.)

The type p of propositions is defined to be w→ t (sets of
worlds). This follows Carnap, modulo replacement of
complete state descriptions by primitive worlds.
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Propositions in Montague Semantics

For p to be true at w is for w to be a member of p.
The intensions for the NL ‘logic words’ are the expected
boolean operation on propositions, e.g. (here  is ‘is
translated as’):

and λwpq.(p w) ∧ (q w) : p→ p→ p
implies λwpq.(p w)→ (q w) : p→ p→ p

i.e. intersection and relative complement of sets of worlds,
respectively.
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NL Entailment in Montague Semantics

The centrally important relation of NL semantics,
entailment between propositions, is modelled by subset
inclusion in w→ t:

entails =def λpq.∀w.(p w)→ (q w) : p→ p→ t

Unfortunately, it follows from the definition of entailment
that mutually entailing propositions must be equal,
i.e. entailment is an antisymmetric relation.
The antisymmetry of entailment is generally seen as a
grave foundational problem of MS.
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Antisymmetry of Entailment in Montague Semantics

Example (logical omniscience): since there is only one
logical truth, the set of all worlds, it is predicted that
anyone who knows one of them (e.g. that Justin Bieber is
Justin Bieber) knows them all (e.g. the Riemann
Hypothesis or its denial, whichever is true).
Example (donkeys and asses): Since Chiquita is a donkey
and Chiquita is an ass are mutually entailing, it is
predicted that anyone who believes the first also believes
the second, but this seems empirically wrong.
Moral: it would be better to model NL entailment with a
relation that is not antisymmetric
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Toward Hyperintensional Semantics: Choice of
Primitives

In Montague semantics, worlds are a basic type,
propositions are defined as sets of worlds, and entailment
as the subset inclusion relation on propositions, which is
unfortunately antisymmetric.
In the kind of hyperintensional semantics (HS) considered
here, we take propositions as a basic type and axiomatize
the entailment relation in such a way that it is not forced
to be antisymmetric.
We then use the subtyping facility of our HOL to define
the type of worlds as a certain subtype of the type of sets
of propositions (namely: the maximal consistent sets of
propositions).
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HS: Starting to Get Technical (1/2)

Besides the truth value type t provided by the logic and
and the type e for entities, our only other basic type is p
for propositions, not the type of worlds as in MS.
Rather than defining entailment as in MS, we introduce
entailment with a basic constant of type p→ p→ t, and
write axioms in HOL saying that entailment is a preorder
(reflexive and transitive, not necessarily antisymmetric).
We introduce more constants for the meanings of the NL
“logic words” and type them as operations on propositions.
Then we write more axioms in HOL which say that the set
of propositions preordered by entailment is a preboolean
algebra (like a boolean algebra, minus antisymmetry).
As a result, we predict (like MS) that the logic of NL
entailment is classical, but avoid the granularity problem.
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HS: Starting to Get Technical (2/2)

Using the subtyping facility of our HOL, we define worlds
to be maximal consistent sets of propositions.
We also add an axiom which says that the algebra of
propositions “has enough worlds”.
This has as a result that, for any two proposiitons p and q,
p entails q iff q is true in every world where p is true.
That is, entailment ‘works the way linguists expect it to’.
We can then define, for each meaning (= hyperintension),
what its extension is at each world.
Worlds and extensions are of philosophical interest, but the
grammar does not ever have to make reference to these.
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Types of (Static) HS

Basic types from the logic:
t (truth values)
n (natural numbers: needed for dynamic HS)
1 (unit type)
Basic static semantic types:
e (entities)
p (propositions)
some nonbasic static semantic types:
p1 =def e→ p (unary static properties)
pn+1 =def e→ pn (n-ary static properties, n > 1)
p1 → p (static generalized quantifiers)
p1 → p1 → p (static determiners)
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Conventions for Variables

a. p, q, and r are of type p
b. A is a type metavariable
c. x is a variable of type A
c. P is a variable of type A→ p

Carl Pollard Logical Grammar: Introduction to Hyperintensional Semantics



Some Static Hyperintensional Constants

a. ` truth : p
b. ` falsity : p
c. ` not : p→ p (translates it is not the case that)
d. ` and : p→ p→ p (translates and)
e. ` or : p→ p→ p (translates or)
f. ` implies : p→ p→ p (translates episodic if . . . then)
g. ` existsA : (A→ p)→ p
h. ` forallA : (A→ p)→ p
i. ` entails : p→ p→ t
j. p ≡ q =def (p entails q) ∧ (q entails p)
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Axioms that Say Entailment is a Preorder

a. ` ∀p.p entails p

b. ` ∀p,q,r.((p entails q) ∧ (q entails r))→ (p entails r)
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Axioms that Say NL Entailment is Classical

a. ` ∀p.p entails truth

b. ` ∀p.falsity entails p

c. ` ∀p,q.(p and q) entails p

d. ` ∀p,q.(p and q) entails q

e. ` ∀p,q,r.((p entails q) ∧ (p entails r))→ (p entails (q and r))
f. ` ∀p,q.p entails (p or q)
g. ` ∀p,q.q entails (p or q)
h. ` ∀p,q,r.((p entails r) ∧ (q entails r))→ ((p or q) entails r)
i. ` ∀p,q.(p implies q) and p) entails q

j. ` ∀p,q,r.((r and p) entails q)→ (r entails (p implies q))
k. ` ∀p.(not p) ≡ (p implies falsity)
l. ` ∀p.(not (not p)) entails p
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Axioms for exists and forall

Note: these will be used to define the meanings of the NL
determiners some and every.

a. ` ∀xP .(P x) entails (exists P )
b. ` ∀pP .(∀x.(P x) entails p)→ ((exists P ) entails p)
c. ` ∀xP .(forall P ) entails (P x)
d. ` ∀pP .(∀x.p entails (P x))→ (p entails (forall P ))
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Worlds in HS (1/2)

Recall: if A is a type and a an A-predicate (i.e. a closed term of
type A→ t), then

Aa is a type
embeda is a term of type Aa → A; and
Axioms:

` ∀y,z∈Aa .((embeda y) = (embeda z))→ y = z)
` ∀x∈A.(a x)↔ ∃y∈Aa .x = (embeda y)

Then we call Aa a subtype of A.
In an interpretation I, I(embeda) denotes a one-to-one
function from I(Aa) to I(A).
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Worlds in HS (2/2)

We now define the type w of worlds to be the subtype
(p→ t)u of the type of sets of propositions, where
u : (p→ t)→ t is the predicate on sets of propositions such
that (u s) says “s is a maximal consistent set of
propositions”. (See Pollard 2008 for details.)
Then the way to say “p is true at w” is not (p w) as in
MS, but rather (embedu w p).
This is abbreviated p@w, read “p is true at w”, or simply
“p at w”.
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The Axiom that Says there are Enough Worlds

We need to make sure there are enough worlds to
guarantee that our NL entailment relation really behaves
the way a linguist expects entailment to behave.
If we were working in a set theory with the Axiom of
Choice (such as ZFC) this would come for free. But the
type theory we are working in is much weaker than ZFC.
The axiom in question is:

` ∀pq.¬(p entails q)→ ∃w.p@w ∧ ¬q@w

In English: for any two propositions p and q, if p does not
entail q, then there is some world where p is true but q is
false.
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Extensional and Intensional Types in HS

We define the hyperintensional types to be p, e, and
types obtained from these using the type constructors
(including 1).
For each hyperintensional type A, the corresponding
extensional type Ext(A) is defined as follows:

Ext(p) = t
Ext(e) = e
Ext(1) = 1
Ext(A×B) = Ext(A)× Ext(B)
Ext(A→ B) = A→ Ext(B)

and the corresponding intensional type Int(A) is defined
as w→ Ext(A).
So there are intensions.
But they aren’t the meanings; hyperintensions are.
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Extensions at Worlds in HS

The extension of a hyperintension a : A at a world w,
written a@w : Ext(A), is defined as follows:

This was already defined for A = p.
a@w = a for A = e.
∗@w = ∗
〈a, b〉@w = 〈a@w, b@w〉
a@w = λx.(a x)@w for A = B → C.

For each hyperintensional type A, the intensionalizer
function is

intA =def λxw.x@w : A→ Int(A).

int a is called the intension corresponding to a.
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Propositions and their Intensions

intp : p→ w→ t is the function that maps each
proposition to the set of worlds which contain it
Hence the family of morphisms intA amounts to a
generalized Stone dual at all hyperintensional types
(Pollard 2011).
For each p : p, int p is a function from worlds to truth
values.
Hence int p is much like a Carnapian proposition, modulo
the replacement of ‘complete state descriptions’ of
(syntactic!) formulas by (semantic!) maximal consistent
sets of propositions.
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The Big Differences between HS and MS

MS is written in Henkin-style HOL; HS in
Lambek-Scott-style HOL.
In MS propositions are sets of worlds; in HS it is the other
way around.
More generally: in MS meanings are intensions; in HS
meanings are hyperintensions and there is a function that
maps each hyperintension to its corresponding intension.
The reason intensional semantics is not fine-grained enough
is because this function isn’t one-to-one.
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