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LECTURE SEVEN:

WORLDS, EXTENSIONS, AND EQUIVALENCE
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(1) Goals of Lecture Seven

• To extend our formal semantic theory to encompass a Soft-

Actualist conception of worlds

• To further extend the theory to make clear what we mean by
the extension of a hyperintension at a world

• To extend the notion of truth-conditional equivalence (mutual
entailment) to a general notion of equivalent hyperinten-

sions.
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A HIGHER-ORDER
THEORY OF WORLDS

7



(2) Worlds Revisited

a. So far our theory doesn’t mention worlds, but we need them:

i. to define the extension of a hyperintension at a world

ii. to analyze modality

iii. to analyze counterfactuals, etc.

b. Following Soft Actualism, we treat worlds not as primitives, but rather as
maximal consistent sets (ultrafilters) of propositions.

c. Fortunately, the predicate (of sets of propositions) of being an ultrafilter is
HOL-definable.

d. So we can define the type World as the subtype of Prop ⊃ Bool consisting of
those sets of propositions which are ultrafilters (with respect to the entailment
preorder on the set of propositions).
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(3) Worlds Defined

We define World to be the type

(Prop ⊃ Bool)u

where u : (Prop ⊃ Bool) ⊃ Bool is the predicate on sets of proposi-
tions such that u(s) says of s that it is an ultrafilter.

But what exactly is u?
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(4) Worlds Defined (Continued)

To see what term u must be, remember that, in a strict boolean
preorder P , an ultrafilter is defined to be a subset s such that ⊥ /∈ s,

and for all p, q ∈ P :

a. if p, q ∈ s then p ⊓ q ∈ s;

b. if p ∈ s and p ⊑ q, then q ∈ s; and

c. either p ∈ s or ¬p ∈ s.

So we take u to be the term

λs[(∼ s(Falsity)) ∧ ∀p,q(φ ∧ ψ ∧ ξ)], where:

a. φ is (s(p) ∧ s(q)) ⊃ s(p and’ q)

b. ψ is (s(p) ∧ (p |= q)) ⊃ s(q)

c. ξ is s(p) ∨ s(not’(p)).
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(5) A Technical, but Necessary, Point

a. Recall that the general machinery for subtyping always provides, for any
predicate a : A ⊃ Bool, a constant embeda : Aa ⊃ A that is interpreted as
the embedding function for the subset that has (the interpretation of) a as
its characteristic function.

b. In the present case, where A is Prop ⊃ Bool, a is u, and the defined subtype
is World (= (Prop ⊃ Bool)u), the term for the embedding function is

embedu : World ⊃ (Prop ⊃ Bool)

c. We will have a practical application for this very soon.
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(6) How to Say a Proposition p is True at a World w

a. In standard PWS, the way to say it is: p(w).

b. That’s because p is a set of worlds (the ones p is true at).

c. But in hyperintensional semantics, w is a set of propositions (the ones true at
w; so, seemingly, the right way to say it is: w(p).

d. But there’s a minor glitch: w(p) is an ill-typed term, since w is not of type
Prop ⊃ Bool, but rather of type World (= (Prop ⊃ Bool)u).

e. This is fixed by using embedu(w) instead of w.

f. And so the right way to say p is true at w is: embedu(w)(p).

g. We will usually abbreviate this as p@w.
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(7) Are there Enough Worlds?

a. Recall that in our metalanguage version of Soft Actualism, we relied crucially
on Stone’s Lemma.

b. This guarantees there are enough ultrafilters so that, for any two propositions
p and q, if p does not entail q, then we can find an ultrafilter that has p, but
not q, as a member.

c. Likewise, in our higher-order formalization of Soft Actualism, we need an
object-language version of Stone’s Lemma, or at least the special case of
it where the strict boolean preorder in question is the set of propositions
preordered by entailment.

d. We can just make this an axiom of our theory by brute force:

⊢ ∀p,q[(p 6|= q) ⊃ ∃s(u(s) ∧ s(p) ∧ ∼s(q))]

e. Alternatively, there are various higher-order versions of the Axiom of Choice
we could adopt, any of which would prove (7d).
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(8) Equivalent Propositions Revisited

An immediate corollary of (7d) is:

⊢ ∀p,q[(p ≡ q) ↔ ∀w(p@w ↔ q@w)]

That is: two propositions are equivalent iff they are true in the same
worlds.

14



(9) More Consequences of Stone’s Lemma

Using the boolean preorder axioms for propositions (Lecture Six)
together with Stone’s Lemma, we can easily prove:

a. ⊢ ∀w[Truth@w = true]

b. ⊢ ∀w[Falsity@w = false]

c. ⊢ ∀w,p[(not’(p))@w = (∼p)@w]

d. ⊢ ∀w,p,q[(p and’ q)@w = (p@w ∧ q@w)]

e. ⊢ ∀w,p,q[(p or’ q)@w = (p@w ∨ q@w)]

f. ⊢ ∀w,p,q[(p implies’ q)@w = (p@w ⊃ q@w)]

(10) Entailment vs. Implication

Utterances of the form ‘S entails S’ are analytic, not contingent.

We can capture this with a meaning postulate using a constant
entails’ : (Prop ∧ Prop) ⊃ Prop:

⊢ ∀w,p,q[(p entails’ q)@w = ∀w′(p@w′ ⊃ q@w′)]

This should be compared with (9f) directly above.
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A HIGHER-ORDER
THEORY OF EXTENSIONS
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(11) What is the Extension of a Meaning at a World?

a. Unlike standard PWS, we can’t just evaluate the meaning at the world, be-
cause meanings are not intensions (functions from worlds to extensions), but
rather hyperintensions.

b. Instead, we will define, for each hyperintensional type A, a function that
assigns, to each hyperintension of type A, a function from worlds to things
of type Ext(A).

c. That is, we have functions that tell what extensions hyperintensions have, at
every world.

d. To talk about these functions within our higher-order theory, we introduce a
family of constants (parametrized by A ∈ HYPER)

extA : A ⊃ (World ⊃ Ext(A))

Usually we omit the subscripts unless confusion could arise.

e. How should these functions be defined?
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(12) The Extension of a Proposition at a World

Obviously, we want the extension of a proposition p at a world w
to be true iff p is true at w! That is:

⊢ ∀p,w[ext(p)(w) = p@w]
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(13) What is the Extension of an Individual at a World?

a. If the individual happens to be the meaning of a name, e.g. Venus, and if
Kripke is right that names have rigid meanings, then we could just write a
meaning postulate such as:

⊢ ∀w[ext(Venus’)(w) = v]

where v is a constant for the planet Venus.

b. But what about a nonrigid individual i? For a given world w, what is the
extension of i there?

c. It seems that the answer to that question should be one of the facts (true
propositions) of w.

d. Now let’s formalize that intuition.
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(14) The Extension of an Individual at a World

a. We assume there is a function from individual-entity pairs to propositions,
denoted by a constant has-as-extension : (Ind ∧ Ent) ⊃ Prop) subject to the
following axiom:

⊢ ∀i,e,w[(ext(i)(w) = e) ↔ has-as-extension(i, e)@w]

b. So for hyperintensions of both of the basic hyperintensional types (Prop and
Ind), what the extension at any world w is dictated by the facts (true propo-
sitions) of w.
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(15) The Remaining Cases

a. ⊢ ∀w,u[extT(u)(w) = ∗]

b. ⊢ ∀w,z[(extA∧B(z)(w) = (extA(π(z))(w), extB(π′(z))(w)

c. ⊢ ∀w,f(extA⊃B(f)(w) = λx∈AextB(f(x))(w))

In other words:

a. A vacuous meaning has vacuous extension.

b. The extension of an ordered-pair meaning is the ordered pair of the extensions
of the components.

c. The extension at w of a meaning that is a function is another function with
the same domain: for each hyperintension in the domain, apply the meaning
to it, and then take the extension at w of the resulting value.
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(16) An Example

It is the last clause (15c) that is interesting.

a. For example, consider the individual property (type Ind ⊃ Prop) of caninity.

b. The extension of this property at a world w is the set of all individuals i such
that the proposition that i is a dog is true at w, i.e. the set of all w-dogs.

c. So the extension at each world is defined in terms of the meaning, not the
other way around (as in standard PWS).

d. This makes intuitive sense: we figure out which things are dogs by looking
at each thing and seeing if it is a dog.

e. Whereas on the standard approach, we figure out what dog means by, in
every world, finding all the dogs there!
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(17) Is Reference Compositional?

a. Frege said yes, and Montague organized his theory in such a way that his
answer was also yes.

b. Frege even had to pay a price to make reference compositional: he had to
stipulate that in certain contexts, the reference of an expression was its cus-
tomary sense!

c. But from a linguistic point of view, there is no reason to think that reference
(as opposed to meaning) is compositional.

d. The evidence is that we can figure out what utterances mean without having
a clue what the contingent facts are.

e. Once we figure out what an utterance means, we can then figure out the
reference if we know enough contingent facts, because reference is jointly
determined by meaning together with contingent fact.

f. Our theory is consistent with this view, and we don’t have to pay Frege’s
price.

23



(18) Another Example

a. For example, to decide whether it is true that Paris Hilton believes snow is
white, we don’t have to know anything about snow.

b. Instead, we have to know whether the proposition expressed by ‘snow is
white’ is one of the ones that Hilton believes.

c. The moral is that, in order to account for the communicative function of
language, we do have to assume meaning is compositional (otherwise how
would we figure out what complex expressions mean?), but there does not
seem to be any reason to assume reference is compositional.
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WHEN ARE HYPERINTENSIONS
EQUIVALENT?
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(19) Three Grades of Equality

We introduce three different families of constants of type (A ∧ A) ⊃
Prop (for A ∈ HYPER):

a. equalsA is interpreted as the meaning of the verb equals. This has ‘true
equality’ as its extension, as expressed in this meaning postulate:

⊢ ∀w,x,y[(x equals y)@w = (x = y)]

b. equivA is interpreted as the meaning of the term-of-art is hyperintensionally

equivalent to, subject to the meaning postulate.

⊢ ∀w,x,y[(x equiv y)@w = ∀w′(ext(x)(w′) = ext(y)(w′))]

c. coextA is interpreted as the meaning of the term-of-art is coextensive with,
subject to the meaning postulate:

⊢ ∀w,x,y[(x coext y)@w = (ext(x)(w) = ext(y)(w))]
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(20) In Plain English . . .

a. An utterance of the form ‘a equals b’ expresses that a and b are the same
hyperintension.

b. An utterance of the form ‘a is hyperintensionally equivalent to b’ expresses
that, at every world, a and b have the same extension at that world.

c. An utterance of the form ‘a is coextensive with b’ expresses that a and b
have the same extension in the world that is actual relative to the utterance
context.
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(21) Basic Facts of Hyperintensional Equivalence

a. Hyperintensional equivalence is intermediate in strength between equality
and coextensiveness:

i. ⊢ ∀x,y[(x equals y) |= (x equiv y)]

ii. ⊢ ∀x,y[(x equiv y) |= (x coext y)]

b. Hyperintensional equivalence is a generalization of truth-conditional equiva-
lence, in the sense that two propositions are hyperintensionally equivalent iff
they entail each other.

c. The preceding is just a restatement of Stone’s Lemma.
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(22) Intensions Revisited

a. Just because we use hyperintensions for meanings doesn’t mean we don’t
have intensions (functions from worlds to extensions).

b. In fact, for any hyperintensional type A, extA is interpreted as a function from
A-hyperintensions to functions from from worlds to things of type Ext(A):

⊢ extA : A ⊃ (World ⊃ Ext(A))

c. Examples:

i. ext of an individual is a function from worlds to entities

ii. ext of a property of individuals is a function from worlds to (characteristic
functions of) sets of individuals

iii. ext of a proposition is a function from worlds to truth values

d. In short, ext converts hyperintensions into their standard PWS counterparts!
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(23) Intensions and Hyperintensions Compared

a. In hyperintensional semantics, we can define a type to be intensional if it
is of the form World ⊃ Ext(A) for some A ∈ HYPER.

b. For two hyperintensions, being equivalent (equiv) just means corresponding
to the same intension, e.g.

i. Hesperus and Phosphorus (assuming rigidity of names)

ii. woodchuck and groundhog

iii. Paris Hilton is Paris Hilton and whichever is true, the Riemann Hypothe-
ses or its denial.
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(24) Totally Stoned Out

a. In particular, for A = Prop:

⊢ extProp : Prop ⊃ (World ⊃ Ext(Prop))

b. But

Ext(Prop) =def Bool

and

World =def (Prop ⊃ Bool)u

c. And so:

⊢ extProp : Prop ⊃ ((Prop ⊃ Bool)u ⊃ Bool)

d. Specifically:

⊢ extProp = λpλw(p@w)

e. This is precisely the Stone mapping that maps each member of a boolean
preorder to the set of ultrafilters to which it belongs.
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(25) Stalnakerian Hyperintensionality

a. Suppose you like some aspects of hyperintensional semantics, but you believe
Stalnaker’s arguments that entailment is antisymmetric.

b. In that case, you can just take the theory we have so far and add the Anti-
symmetry axiom

⊢ ∀p,q[(p ≡ q) ⊃ (p = q)]

c. Then (in an intepretation) the Stone mapping is an injection (as in Stone’s
original Representation Theorem for boolean algebras).

d. So you have something more like standard PWS semantics, except that the
Nonprincipal Ultrafilters Problem and the Paris Hilton Omniscience Problem
do not arise.

e. In this setup, the boolean algebra of propositions is isomorphic (via the Stone
embedding) to a subalgebra of a powerset algebra (viz. the powerset of the
set of ulktrafilters), without having to maintain (as standard PWS does) that
it is a powerset algebra.
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(26) The Heart of the Problem

The central foundational problem of standard PWS its failure to be
informed by the Stone Representation Theorem.

a. Generalized to boolean preorders (i.e. not requiring antisymmetry), Stone
gives a boolean homomorphism from propositions to sets of worlds (in the
sense of maximal consistent sets of propositions, i.e. ultrafilters).

b. But there is no good reason to assume that this homomorphism is either
injective or surjective; in fact either assumption leads to problems.
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(27) The Problem with Injectivity

a. If the Stone mapping on propositions were injective, then entailment would
be antisymmetric.

b. That leads to the Logical Omnisicence Problem, the propositional manifes-
tation of the Granularity Problem.
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(28) One Problem with Surjectivity

a. If the Stone mapping on propositions were surjective, then there would be
propositions whose images are singleton sets (of ultrafilters).

b. These are the source of the Paris Hilton Omniscience Problem.
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(29) Another Problem with Surjectivity

a. Since there must be an infinite number of equivalence classes of propositions,
there must also (assuming Choice) be nonprincipal ultrafilters. Let u be one
of them.

b. By surjectivity, there must be a proposition p whose image is {u}.

c. By definition of the Stone mapping, u is the only ultrafilter with p as a
member.

d. Since u is not principal, it does not have a least element, so p is not least in
u.

e. So there must be q ∈ u such that q entails p but p does not entail q.

f. By Stone’s Lemma, there must be an ultrafilter v such that p ∈ v but q /∈ v.

g. But since p ∈ v, v = u.

h. So q /∈ u, a contradiction.

i. This is the Nonprincipal Ultrafilters Problem.
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LECTURE EIGHT:

QUANTIFIERS AND MODALITY
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(30) Goals of Lecture Eight

• To make sense of the notion of extensionality in the hyperin-

tensional setting

• To show that, in hyperintensional semantics, quantificational
meanings work as expected

• To give hyperintensional analsyes of some basic modal concepts
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GENERALIZED QUANTIFIERS IN
HYPERINTENSIONAL SEMANTICS
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(31) A Preliminary Notion: Extensionality

a. In standard PWS, a property is called extensional iff whether or not an
intension has the property depends only on the intension’s extension. Exam-
ple:

b. Asssuming Zog is one of the Ancients, being seen by Zog is an extensional
property. So if Zog sees Hesperus, then Zog must also see Phosphorus (since
they have the same extension).

c. But being worshipped by Zog is not an extensional property: Zog might have
worshipped Hesperus but not Phosphorus.
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(32) Extensionality in Hyperintensional Semantics

a. In hyperintensional semantics, an A-property is something of type A ⊃
Prop. E.g.

i. groundhog’ : Ind ⊃ Prop is interpreted as an individual property

ii. obvious : Prop ⊃ Prop is intepreted as a propositional property.

b. If A∈HYPER, we say an A-property f is extensional iff, at every world w,
for any two A-hyperintensions a and b, if a and b are coextensive at w, then
f(a) and f(b) have the same truth value.

c. More generally, we say a functional hyperintension f : A ⊃ B (A,B ∈
HYPER) is extensional iff, at every world w, for any two A-hyperintensions
a and b, if a and b are coextensive at w, then so are f(a) and f(b).
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(33) Formalizing Extensionality in Hyperintensional Semantics

a. We introduce the family of constants extlA,B : (A ⊃ B) ⊃ Bool (A,B ∈
HYPER), intepreted as the predicate (on hyperintensions of type A ⊃ B) of
being extensional.

b. These are subject to the axioms:

⊢ ∀f∈A⊃B[extl(f) = ∀w,x,y[(x coext y)@w ⊃ (f(x) coext f(y))@w]]
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(34) Examples

a. Seen as properties of pairs of propositions, the meanings of the English logic
words and, or, and if . . . then are extensional, e.g. the truth value of (p and’ q)
depends only on the extension of (p, q) (a pair of truth values).

b. Likewise, the meaning of it is not the case that is an extensional property of
propositions.

c. These were already shown in (9) above.

d. In general, an extensional property of (tuples of) propositions is called a
truth-conditional propositional operator.
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(35) Another Example

a. Being a groundhog is an extensional property:

⊢ ∀w,x,y[(x coext y)@w ⊃ (groundhog’(x)@w ↔ groundhog’(y)@w)]

b. So (assuming the meaning of Miss America is a nonrigid individual), in a
world where Miss America and Dick Cheney are coextensive, Dick Cheney is
a groundhog in that world iff Miss America is a groundhog in that world.

c. The way we say in the theory that being a groundhog is an extensional
property is with the meaning postulate:

⊢ extl(groundhog’)
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(36) Definitions (Quantifiers and Determiners)

For A ∈ HYPER,

a. an A-quantifier is an extensional function of type (A ⊃ Prop) ⊃ Prop,
i.e. an extensional property of A-properties.

b. an A-determiner is an extensional function of type ((A ⊃ Prop) ∧ (A ⊃
Prop)) ⊃ Prop, i.e. an extensional property of pairs of A-properties.
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(37) Examples of Determiners

a. We introduce families of constants (parametrized by A∈HYPER) interpreted
as the meanings of the English determiners every, some, and no :

⊢ every’A, some’A, no’A : ((A ⊃ Prop) ∧ (A ⊃ Prop)) ⊃ Prop

b. The expected truth-conditional behavior of these determiners is given by the
following meaning postulates:

⊢ ∀w,P,Q[every’(P,Q)@w = ∀x(P (x)@w ⊃ Q(x)@w)]

⊢ ∀w,P,Q[some’(P,Q)@w = ∃x(P (x)@w ∧ Q(x)@w)]

⊢ ∀w,P,Q[no’(P,Q)@w = ∼∃x(P (x)@w ∧ Q(x)@w)]
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A FIRST LOOK AT MODALITY IN
HYPERINTENSIONAL SEMANTICS
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(38) Definition (Intensionality)

a. We call a functional hyperintension intensional if its application to equiva-
lent arguments yields equivalent values.

b. For properties of propositions (i.e. functions of type Prop ⊃ Prop), intension-
ality corresponds to the traditional concept of substitutivity (preservation
of truth value, at all worlds, upon substitution of the argument by something
equivalent).

c. To assert intensionality within the theory, we introduce a family of constants
intlA,B : (A ⊃ B) ⊃ Bool (A,B ∈ HYPER), interpreted as the predicate (on
functions of of type A ⊃ B) of being intensional.

d. These are subject to the axioms:

⊢ ∀f∈A⊃B[intl(f) = ∀x,y[(x ≡ y) ⊃ (f(x) ≡ f(y))]]

e. It’s easy to see that any functional hyperintension which is extensional is also
intensional, but not conversely.
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(39) Basic Facts about Intensionality

a. This concept has no interesting counterpart in standard PWS since there
equivalence of intensions reduces to equality (and so all functions are trivially
intensional).

b. So we can ask a question that is unaskable in standard PWS: are there any
interesting intensional meanings (other than extensional ones)?

c. Any example of a nonintensional hyperintension is going to correspond to a
problem for standard PWS, e.g.

i. the individual property of being worshipped by Zog (cf. (31))

ii. the property of propositions of being known by Paris Hilton
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(40) Example: Alethic Necessity

a. We say a proposition is (alethically) necessary iff it is a top relative to
entailment, or equivalently (by Stone’s Lemma), iff it is true at all worlds.

b. We introduce the constant nec : Prop ⊃ Prop to be interpreted as althetic
necessity.

c. This is subject to the axiom:

⊢ ∀p[nec(p) ≡ (p equiv Truth))

d. Or, equivalently:

⊢ ∀w,p[nec(p)@w = ∀w′(p@w′)]

e. Clearly alethic necessity is intensional but not extensional.
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(41) What is a Modal Operator?

a. We might consider defining a modal operator to be an intensional property
of propositions which is nonextensional (thus excluding not only noninten-
sional operators but also truth-conditional ones).

b. Of course, further conditions traditionally associated with � or ♦ modalities
could be imposed, e.g.

i. being either nonincreasing (⊢ m(p) |= p) or nondecreasing
(⊢ p |= m(p))

ii. being monotonic (if ⊢ p |= q then ⊢ m(p) |= m(q)), from which being
intensional follows

iii. being subidempotent (⊢ m(m(p)) |= m(p)) or superidempotent (⊢ m(p) |=
m(m(p))

iv. preserving conjunction (⊢ m(p and’ q) ≡ (m(p) and’ m(q))) up to equiva-
lence, etc.
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(42) Accessibility Relations Recalled

a. In standard PWS, (unary) modal operators are characterized by accessibil-
ity relations, i.e. binary relations on (primitive) worlds.

b. For R an accessibility relation, the corresponding necessity operator �R maps
each “standard proposition’ (i.e. each set of worlds) p to the set of all worlds
w such that p is true at (i.e. has as a member) every world R-accessible from
w:

�R(p) =def {w ∈W | ∀w′∈W [R(w,w′) ⊃ w ∈ p]}
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(43) Accessibility in Hyperintensional Semantics

a. As usual, we turn everything around.

b. We start with a modal operator �, i.e. an intensional function of type Prop ⊃
Prop.

c. Then the corresponding accessibility relation R(�) is the set of all pairs of
ultrafilters 〈w,w′〉 such that every proposition that has property � at w is
true at w’.

d. To axiomatize this, we introduce a constant R of type ((Prop ⊃ Prop) ⊃
((World ∧ World) ⊃ Bool)), which will be interpreted as the function that
maps each modal operator to the accessibility relation it induces.

e. This is subject to the following axiom:

⊢ ∀�∈Prop⊃Prop[R(�) = λw.w′∀p(�(p)@w ⊃ p@w′)]

f. Equivalent modal operators have the same accessibility relation.
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(44) Modal Bases Recalled

a. For Kratzer, a modal base is a function B that assigns to each (primitive)
world a set of (standard) propositions.

b. The corresponding accessibility relation is then defined such that w′ is B-
accessible from w iff it belongs to every proposition in B(w).

(45) Modal Bases, Hyperintensionally

a. In hyperintensional semantics, again we go the other way.

b. If � is a modal operator, then the associated modal base is ext(�), which is
λwλp[�(p)@w] : World ⊃ (Prop ⊃ Bool),

c. Then the hyperintensional counterpart of (44b) is (defining ⊆ as usual in
HOL):

⊢ ∀�[R(�) = λw,w′[ext(�)(w) ⊆ w′]]

d. This is just a paraphrase of our previous axiom (43e).

e. Except for dropping Antisymmetry, and for formalizing it in HOL, this is all
in line with Jónsson and Tarski 1951.
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(46) Example (Alethic Necessity)

a. In an an interpretation, the modal base ext(nec) maps each world to the set
of tops (analytic truths).

b. And so, for each pair of worlds 〈w,w′〉, w′ is accessible from w iff w′ has every
top as a member.

c. But every top belong to every ultrafilter, and so every world is accessible
from every world.

d. It is not hard to show that

⊢ ∀p,q[(p entails q) ≡ (nec(p implies q))]
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