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TENTATIVE COURSE OVERVIEW (DOUBTLESS

OVERLY AMBITIOUS)

Day One

Lecture 1: Introduction and Motivation

Lecture 2: Problems with Standard Possible-Worlds Semantics

Day Two

Lecture 3: Soft Actualism Defined and Algebraicized

Lecture 4: The Positive Typed Lambda Calculus
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Day Three

Lecture 5: Higher Order Logic with Subtypes

Lecture 6: Hyperintensions and Entailment

Day Four

Lecture 7: Worlds, Extensions, and Equivalence

Lecture 8: Quantifiers and Modality

Day Five

Lecture 9: Questions

Lecture 10: Wrap-Up
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LECTURE FIVE:

HIGHER-ORDER LOGIC

WITH SUBTYPES
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(1) Goals of Lecture Five

• Review how to extend positive TLC to a HOL

• Show (following roughly Lambek and Scott 1986) how to add a

subtyping schema that functions in the HOL analogously to the
Axiom Schema of Separation in axiomatic set theory.
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FROM TYPED LAMBDA CALCULUS
TO HIGHER-ORDER LOGIC
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(2) Generalities on Extending a TLC to an HOL

The overall approach is indebted to Church (1940), Henkin (1950), and
Lambek and Scott (1986).

a. Start with a positive TLC with a basic type Bool; terms of this type are called
formulas.

b. In an interpretation, Bool is interpreted as a set with two elements called truth
values.

c. Add an equality symbol =A: (A ∧ A) ⊃ Bool for each type A.

d. Define the usual logical connectives and quantifiers (for formulas) in terms of λ
and equality.

e. Add suitable axioms and rules for proving formulas.

f. We end up with two logics:

i. the type logic (the intuitionistic logic of the type system)

ii. the term logic (the classical logic of formulas).
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(3) In a A Logic Defined in this Way:

• all the usual TLC lambda equivalences (‘conversion’) are provable

equalities of the term logic

• anything you would expect to be able to prove in classical first-
order predicate logic is also provable

• quantification is permitted over variables of all types
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(4) Early Development of HOL

a. Church’s (1940) Simple Theory of Types (STT) introduced constants for boolean
negation, disjunction, and universal quantification, and then defined equality via
Leibniz’s Law:

a =A b =def ∀f∈A⊃Bool[f(a) ⊃ f(b)]

b. Henkin (1950):

i. added to STT a key axiom (Boolean Extensionality) identifying boolean
equality with bi-implication:

⊢ ∀s,t∈Bool[(s↔ t) ⊃ (s = t)]

ii. proved completeness relative to the class of set-theoretic models that bear
his name.
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(5) Continued Development of HOL

a. Gallin (1975) showed that Henkin’s HOL with two basic types (besides Bool)
was equivalent (in a precise sense) to Montague’s IL.

b. Groenendijk and Stokhof (1980s) started using Ty2 instead of IL for NL seman-
tics.

c. Lambek and Scott (1986):

i. generalized to allow for an intuitionistic term logic

ii. added subtyping (analogous to the Axiom of Separation in set theory)

iii. allowed a wider class of (not necessarily set-theoretic) models (toposes).
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(6) Classical Connectives and Quantifiers are Definable

Here φ and ψ are metavariables over formulas, x is a variable of type
A, and t is a variable of type Bool:

a. true =def ∗ = ∗;

b. ∀xφ =def λxφ = λxtrue;

c. false =def ∀tt

d. φ ∧ ψ =def (φ, ψ) = (true, true);

e. φ ⊃ ψ =def φ = (φ ∧ ψ);

f. φ↔ ψ =def [(φ ⊃ ψ) ∧ (ψ ⊃ φ)];

g. ∼ φ =def φ ⊃ false;

h. φ ∨ ψ =def∼ [(∼ φ) ∧ (∼ ψ)]; and

i. ∃xφ =def∼ ∀x ∼ φ.

Note that once the definitions are unpacked, all these formulas are just

equations between two lambda terms.
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(7) Numerous Options for Axiomatizing HOL

• Gallin (Ty2, 1975) essentially follows Henkin 1950.

• Carpenter (1997) essentially follows Andrews 1986.

• Lambek and Scott (1986) have ∧ in the underlying type logic,
subtyping, and the option of having the term logic be intuitionistic.

• We remain agnostic about how to best axiomatize HOL, and just

mention some useful rules and theorems (or axioms, depending on
the axiomatization).
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(8) Equality is an Equivalence Relation

In the following, α, β, γ, δ are metavariables over terms, and φ, ψ are
metavariables over formulas,

a. ⊢ α = α (reflexivity)

b. ⊢ (α = β) ↔ (β = α) (symmetry)

c. ⊢ [(α = β) ∧ (β = γ)] ⊃ (α = γ) (transitivity)
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(9) Substitution of Equals

a. ⊢ [(α = γ) ∧ (β = δ)] ⊃ ((α, β) = (γ, δ))

b. ⊢ [(α = γ) ∧ (β = δ)] ⊃ (α(β) = γ(δ))

c. ⊢ (α = β) ⊃ (π(α) = π(β)

d. ⊢ (α = β) ⊃ (π′(α) = π′(β)

e. ⊢ (α = β) ⊃ (λxα = λxβ)

15



(10) Axioms for Cartesian Products

a. ⊢ α = ∗ (α a term of type T)

b. ⊢ π(α, β) = α

c. ⊢ π′(α, β) = β

d. ⊢ (π(γ), π′(γ)) = γ
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(11) Axioms for Lambda Conversion

a. ⊢ λx∈Aγ[x] = λy∈Aγ[y] if y is substitutable for x in γ (Rule α)

b. ⊢ [λx∈Aγ[x]](a) = γ[a] if a is substitutable for x in γ (Rule β)

c. ⊢ λx(α(x)) = α if x is not free in α (Rule η)
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(12) Axioms for Boolean Equality

a. ⊢ φ = (φ = true)

b. If ⊢ φ and ⊢ φ = ψ, then ⊢ ψ

c. ⊢ φ iff ⊢ φ = true

d. ⊢ ∀s,t[(s↔ t) ⊃ (s = t)] (Boolean Extensionality)
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ADDING SUBTYPING
TO HIGHER-ORDER LOGIC
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(13) Motivation for Subtypes

• Standard HOL has no way to say A is a subtype of B.

• In an intepretation I, this should mean I(A) ⊆ I(B).

• Syntactic example: we might want to say that the type NPacc of
NPs that can be objects of verbs is a subtype of NP.

• Semantic example: we might want to say that the type World is a

subtype of the type Prop ⊃ Bool of sets of propositions (namely
the ones which are maximal consistent sets).
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(14) Subtypes (after Lambek and Scott 1986)

If A is a type and a an A-predicate (i.e. a closed term of type A ⊃
Bool), then

• Aa is a type

• embeda is a term of type Aa ⊃ A; and

• Axioms:

⊢ ∀y,z∈Aa
[(embeda(y) = embeda(z)) ⊃ y = z)]

⊢ ∀x∈A[a(x) ↔ ∃y∈Aa
x = embeda(y)]
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(15) What Subtypes Mean in an Interpretation I

• I(a) is a function from I(A) to truth values

• I(embeda) is a one-to-one function from I(Aa) to I(A)

• the members of I(A) that I(a) maps to I(true) are the ones that
are embedded images of members of I(Aa).

In short: I(embeda) is the function that embeds into I(A) the subset
whose characteristic function is I(a).

22



LECTURE SIX:

A HIGHER-ORDER THEORY OF

HYPERINTENSIONS AND ENTAILMENT
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(16) Goals of Lecture Six

• To introduce the various types of hyperintensions and their uses,

and their correspponding extensional types

• To lay out the high-order theory of natural language entailment
and the meanings of the English ‘logic words’ (“natural-language
natural deduction”)

24



INTRODUCING HYPERINTENSIONS
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(17) Review of Basic Types

a. Recall that out only basic types are:

i. Prop, for propositions, the kind of things that can be meanings of utter-
ances of declarative sentences

ii. Ind, for individual concepts (individuals for short), the kind of things
that can be meanings of utterances of names

iii. Bool, for truth values, the kind of things that can be extensions of propo-
sitions (at worlds)

iv. Ent, for entities, the kind of things that can be extensions of individuals (at
worlds)

b. In particular World is not a basic type.

c. But World will be defined as a certain subtype of the type Prop ⊃ Bool.

d. So in an intepretation, worlds will be certain sets of propositions.
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(18) The Notion of a Kind

a. By a kind, we mean a recursively defined set of types.

b. ‘Recursively defined’ here means defined at the level of the metalanguage using
the informal ambient set theory (ZFC).

c. In other words, we are incorporating a form of schematic or abbreviatory
polymorphism.

d. To define kinds internally, we would need a richer type theory (i.e. at the level
of types we would need both lambda abstraction and a fixed-point operator).
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(19) The Kind HYPER of Hyperintensions

a. Intuitively, hyperintensions are the kind of thing that can be meanings.

b. Hyperintensions can be thought of as mathematical models of Fregean senses
(competing with the intensional modelling of standard PWS).

c. In fact, we will still have intensions; but we won’t use them as meanings (but
rather to pick out equivalences classes of meanings).

d. There are lots of different types of hyperintensions.

e. We collect these types together into a kind called HYPER.

f. Informally, the kind HYPER is obtained by closing the set of basic hyperinten-
sional types {Prop, Ind} under the positive TLC type constructors and subtyp-
ing.
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(20) The Kind HYPER Defined

a. Prop ∈ HYPER and Ind ∈ HYPER

b. T ∈ HYPER

c. If A,B ∈ HYPER, then A ∧ B ∈ HYPER.

d. If A,B ∈ HYPER, then A ⊃ B ∈ HYPER.

e. If A ∈ HYPER and a is an A-predicate (i.e. a closed term of type A ⊃ Bool),
then Aa ∈ HYPER.

Note that this last clause just says that any lambda-definable subtype of a
hyperintensional type is also a hyperintensional type.

f. Nothing else is a hyperintensional type.
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(21) Hyperintensional Types and Syntactic Categories

a. Since we are trying to stay neutral about NL syntax, we have no precise inventory
of syntactic categories.

b. But informally, we can give some rough correspondences between hyperinten-
sional types and categories of linguistic expressions.

c. Examples follow.
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(22) Some Constants for Word Meaning

a. Ind corresponds to names, e.g. Fido’

b. T corresponds to dummy pronouns. Recall that up to provable equality, the
only closed term of this type is ∗.

c. T ⊃ Prop corresponds to weather verbs and other intransitive verbs with dummy
subjects, e.g. rain’

d. Ind ⊃ Prop corresponds to ordinary intransitive verbs, and to common nouns,
e.g. dog’, bark’

e. (Ind ∧ Ind) ⊃ Prop corresponds to ordinary transitive verbs, e.g. bite’

f. (Ind ∧ Ind ∧ Ind) ⊃ Prop corresponds to ordinary ditransitive verbs, e.g. give’

g. (Ind ∧ Prop) ⊃ Prop corresponds to verbs with sentential complements (includ-
ing propositional attitude verbs), e.g. know’

h. ((Ind ⊃ Prop) ∧ (Ind ⊃ Prop)) ⊃ Prop corresponds to determiners, e.g. every’.
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(23) Extensional Types

a. We define a function Ext from hyperintensional types to types.

b. For each A ∈ HYPER, Ext(A) is called the extensional type corresponding
to A.

c. At any world (to be defined later), the extension at that world of any hyperin-
tension of type A will be of type Ext(A).
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(24) Correspondence between Hyperintensional and Extensional
Types

The correspondence is recursively defined as follows:

a. Ext(Prop) =def Bool

b. Ext(Ind) =def Ent

c. Ext(1) =def 1

d. Ext(A ∧ B) =def Ext(A) ∧ Ext(B)

e. Ext(A ⊃ B) =def A ⊃ Ext(B)

f. Ext(Aa) =def Ext(A)
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(25) Linguistic Consequences

At any world:

a. Declarative sentences denote truth values

b. Names denote to entities

c. Dummy pronouns have vacuous reference

d. The list of complements of a verb denotes the ordered tuple of the denotations
the complements.

e. A verb that expresses a function from A’s to propositions denotes (the charac-
teristic function of) a set of A’s.
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(26) An Obvious Example

a. For example, a VP that takes a sentential subject expresses a function from
propositions to propositions, but denotes a set of propositions.

b. More specifically, at any world, is obvious denotes the set of propositions that
are obvious in that world.

c. To make this more precise, we need to extend our theory to include worlds and
extensions of hyperintensions at worlds (Lecture 7).
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A HIGHER-ORDER THEORY
OF ENTAILMENT
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(27) Entailment Recalled

a. Recall that entailment is a certain preorder on propositions.

b. Pretheoretically: p entails q iff q is true in every world where p is true.

c. In standard PWS (say, in Ty2 to be specific), there is a complex closed term of
type Prop ⊃ (Prop ⊃ Bool) (where Prop is defined as World ⊃ Bool) that in any
interpetation is interpreted as the entailment relation, namely λpλqλw[q(w) ⊃
p(w)].

d. This is curried so that the sentential complement is the first argument and the
sentential subject is the second argument (of the sentence p entails q.

e. Careful: the symbol ⊃ here is for boolean implication (we never use this symbol
for reverse set-inclusion).

f. So propositions are (characteristic functions of) sets of worlds, and entailment is
(the curried form of the characteristic function of) the subset inclusion relation
on sets of worlds.
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(28) Hyperintensional Entailment

a. But in hyperintensional semantics, propositions and entailment are not defined
in terms of worlds.

b. Instead, the term that is interepreted as the entailment relation is just a constant
of type (Prop ∧ Prop) ⊃ Bool, written |=. (We don’t bother to curry the type.)

c. At every world, the entailment relation will be the denotation of the verb entails.

d. So the meaning of this verb is rigid: whether one sentence utteranance follows
from another is not contingent on how things are!

e. This is confusing at first for many people used to thinking of |= only as a metalan-
guage symbol (for the semantical consequence relation between boolean terms).

f. Get used to it! This is a logical theory about entailment.
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(29) (Equivalence Revisited

a. We use the constant ≡ of type (Prop ∧ Prop) ⊃ Bool for mutual entailment, by
adding this axiom to our theory (the first one in our semantic theory):

⊢ ∀p,q[(p ≡ q) = (p |= q ∧ q |= p)]

b. There will never be anything in our theory that will let us prove

⊢ ∀p,q[(p ≡ q) ⊃ (p = q)

c. That is, unlike the situation in intensional semantics, entailment in hyperinten-
sional semantics is not antisymmetric.

d. Of course boolean implication is still antisymmetric:

⊢ ∀s,t[(s↔ t) ⊃ (s = t)]

(Remember, that is Henkin’s Axiom of Boolean Extensionality).
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(30) Preorder Axioms for Entailment

a. In accordance with (algebraicized) Soft Actualism, we will axiomatize entailment
so that it is a strict boolean preorder, with the meanings of the English logic
words as the boolean connectives.

b. So we start with the preorder axioms:

i. ⊢ ∀p(p |= p)

ii. ⊢ ∀p,q,r(p |= q) ⊃ ((q |= r) ⊃ (p |= r)))

c. The natural-language significance of these is, respectively:

i. Every declarative sentence follows from itself.

ii. Hypothetical Syllogism is a valid rule of natural-language argumentation.
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(31) Boolean Operations on Propositions

Next we introduce the constants that will be interpreted as the desg-
nated boolean operations with respect to the entailment preorder on

propositions (once appropriate axioms have been provided).

a. Truth : Prop will be interpreted as ⊤, the designated top.

b. Falsity : Prop will be interpreted as ⊥, the designated bottom.

c. not’ : Prop ⊃ Prop will be interpreted as ¬, the designated complement opera-
tion.

d. and’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as ⊓, the designated glb
operation.

e. or’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as ⊔, the designated lub opera-
tion.

f. implies’ : (Prop ∧ Prop) ⊃ Prop will be interpreted as ⇒, the designated relative
complement operation.
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(32) NL Significance of the Boolean Operations
a. Meanings of analytically true sentences will be equivalent to ⊤.

b. Meanings of analytically false sentences will be equivalent to ⊥.

c. ¬ will be the meaning of it is not the case that.

d. ⊓ will be the meaning of the sentential coordinate conjunction and.

e. ⊔ will be the meaning of the sentential coordinate conjunction or.

f. ⇒ will be the meaning of the discontinuous sentential conjunction if . . . then.
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(33) Axioms for Truth and Falsity

a. The interpretation of Truth is a top (analytic truth) with respect to entailment:

⊢ ∀p(p |= Truth)

b. The interpretation of Falsity is a bottom (analytic falsehood) with respect to
entailment:

⊢ ∀p(Falsity |= p)

(34) NL Significance of theAxioms for Truth and Falsity

a. An analytically true sentence follows from anything.

b. Anything follows from an analytically false sentence
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(35) Axioms for and’

The meaning of and is a glb operation with respect to entailment:

a. ⊢ ∀p,q((p and’ q) |= p)

b. ⊢ ∀p,q((p and’ q) |= q)

c. ⊢ ∀p,q,r[((p |= q) ∧ (p |= r)) ⊃ (p |= (q and’ r))]

(36) NL Significance of the Axioms for and’

The familiar natural deduction rules of Conjunction Elimination and

Introduction are valid rules of natural language argumentation.
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(37) Axioms for or’

The meaning of or is a lub operation with respect to entailment:

a. ⊢ ∀p,q(p |= (p or’ q))

b. ⊢ ∀p,q(q |= (p or’ q))

c. ⊢ ∀p,q,r[((p |= r) ∧ (q |= r)) ⊃ ((p or’ q) |= r)]

(38) NL Significance of the Axioms for or’

The familiar natural deduction rules of Disjunction Introduction and

Elimination are valid rules of natural language argumentation.
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(39) Axioms for implies’

The meaning of if . . . then is a relative pseudocomplement operation
with respect to entailment:

a. ⊢ ∀p,q[(p implies’ q) and’ p) |= q]

b. ⊢ ∀p,q,r[((r and’ p) |= q) ⊃ (r |= (p implies’ q))]

(40) NL Significance of the Axioms for implies’

The familiar natural deduction rules of Implication Elimination (Modus
Ponens) and Introduction (Curry’s Rule) are valid rules of natural lan-
guage argumetation.
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(41) The Axiom of Contradiction

The meaning of it is not the case that is a pseudocomplement operation
with respect to entailment:

a. ⊢ ∀p((not’ p) ≡ (p implies’ Falsity))

b. NL significance: Proof by Contradiction is valid in natural language reasoning.

(42) Summary so Far

It is a prediction of our semantic theory thus far that standard intu-
itionistic propositional reasoning is valid for natural language, i.e. sen-
tence meanings preordered by entailment form a strict heyting pre-

order.
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(43) The Axiom of Double Negation

The meaning of it is not the case that satisfies Double Negation, and
so from now on we can speak of simply (relative) complements instead

of (relative) pseudocomplements:

a. ⊢ ∀p[(not’ (not’ p)) |= p]

b. NL significance: standard classical propositional reasoning is valid for natural
language, i.e. sentence meanings preordered by entailment form a strict boolean
preorder.

c. Note that so far worlds have played no role in the theory; we have not even
introduced them yet!
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(44) The Semantic Theory So Far

a. ⊢ ∀p,q[(p ≡ q) = (p |= q ∧ q |= p)]

b. ⊢ ∀p(p |= p)

c. ⊢ ∀p,q,r(p |= q) ⊃ ((q |= r) ⊃ (p |= r)))

d. ⊢ ∀p(p |= Truth)

e. ⊢ ∀p(Falsity |= p)

f. ⊢ ∀p,q((p and’ q) |= p)

g. ⊢ ∀p,q((p and’ q) |= q)

h. ⊢ ∀p,q,r[((p |= q) ∧ (p |= r)) ⊃ (p |= (q and’ r))]

i. ⊢ ∀p,q(p |= (p or’ q))

j. ⊢ ∀p,q(q |= (p or’ q))

k. ⊢ ∀p,q,r[((p |= r) ∧ (q |= r)) ⊃ ((p or’ q) |= r)]

l. ⊢ ∀p,q[(p implies’ q) and’ p) |= q]

m. ⊢ ∀p,q,r[((r and’ p) |= q) ⊃ (r |= (p implies’ q))]

n. ⊢ ∀p((not’ p) ≡ (p implies’ Falsity))

o. ⊢ ∀p[(not’ (not’ p)) |= p]
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(45) In Other Words . . .

a. These axioms say no more, and no less, than that entailment together with
the boolean connectives (meanings of the English ‘logic words’) make the set of
propositions into a strict boolean preorder.

b. From these we can prove:

i. the usual equivalences for the boolean connectives

ii. the tonocity and substitutivity theorems for these connectives (of which met-
alanguage versions were discussed earlier).

50


