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LECTURE THREE:

SOFT ACTUALISM
DEFINED AND ALGEBRAICIZED



(1) Goals of Lecture Three

a. Review the philosophical stance called Soft Actualism

b. Develop some math concepts about strict boolean preorders that we will
use for modelling Soft Actualism.

c. Apply the math to modelling Soft Actualism in an informal way. [Here ‘in-
formal’ means we are working in the metalanguage, with ZFC as the ambient
set theory: later we will formalize our entire semantic theory in higher-order
logic.|



SOFT ACTUALISM DEFINED



(2) Some Stances toward Worlds

a. Standard PWS: Nonactual worlds exist (at least in the sense of being
countenanced by the theory) as primitives, not constructed out of anything
else.

b. David Lewis-style PWS: A subspecies of the preceding. There is nothing
special about the actual world, as compared with (so-called) nonactual ones,
except that we are in it; ‘nonactual” worlds are just as real to their respective
inhabitants as ours is to us.

c. Hard Actualism: There are no non-actual worlds, period.

d. Soft Actualism: Nonactual worlds exist, in the sense of being logically
constructed out of things in the actual world. (This is made more specific
below.)



(3) Robert Adams’ (1974) Soft Actualism

a.

b.

Propositions exist as primitives, in the sense of not being constructed out of
other things (e.g. worlds).

The set of propositions is equipped with a ‘logical structure’ that enables us
to specify certain subsets as the maximal consistent ones.

Worlds exist only as maximal consistent sets of propositions.

. So there are no ‘primitive’ worlds that compete with the constructed ones for

which get to be the possible ways things might be.
Adams thought of propositions as in some sense being of the actual world,
so that nonactual worlds are constructed out of things in the real world.

But we could just as well (and indeed will) say that propositions are out
there (in ‘Frege’s Heaven’) independently of worlds, and worlds are maximal
consistent sets of them.

This variant form of soft actualism shares with David Lewis’s view that the
actual world has no distinguished status in the theory.



STRICT BOOLEAN PREORDERS
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(4) Definitions (Preorder and Induced Equivalence)

a. A binary relation C on a set A is called a preorder on A iff it is reflexive
and transitive.

b. If C is a preorder on A, then the equivalence on A induced by C, written
=c (or just = if no confusion will arise), is defined by a = b iff a C b and
bC a.

= is obviously an equivalence relation.
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(5) Definitions (Least and Greatest Elements)
Suppose C is a preorder on A, B C A, and a € B. Then a is said
to be:

a. a least element of B (relative to C) iff, for every b€ B, a C b
b. a greatest element of B (relative to C) iff, for every b€ B, a C b.

Note that all least elements of B are equivalent, and all greatest
elements of B are equivalent.
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(6) Definitions (Top and Bottom Elements)
Suppose C is a preorder on A, and a € A. Then a is said to be:
a. a bottom element of A (relative to C) iff it is a least element of A

b. a top element of A (relative to C) iff, it is a greatest element of A.

Note that all bottom elements of A are equivalent, and all top ele-
ments of A are equivalent.
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(7) Definitions (Upper Bounds and Lower Bounds)
Suppose C is a preorder on A, B C A, and a € A. Then a is said to
be:

a. an upper bound of B iff, for every be B, b C a

b. aleast upper bound (lub) of B iff it is a least member of the set of upper
bounds of B

c. a lower bound of B iff, for every be B, a C b

d. a greatest lower bound (glb) of B iff it is a greatest member of the set of
lower bounds bounds of B.

Note that all lubs of B are equivalent, and all glbs of B are equiva-
lent.
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(8) Observations about Least and Greatest Elements
Suppose C is a preorder on A, B C A, and a € B. Then:
a. The following three conditions on a are equivalent:
i. a is a greatest element of B;
ii. a is an upper bound of B; and
iii. a is a lub of B.
b. The following three conditions on a are equivalent:
i. a is a least element of B;
ii. a is a lower bound of B; and
iii. a is a glb of B.

Caveat: These equivalences no longer hold if a ¢ B!
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(9) Definition (Strict Bicartesian Preorder)
A strict bicartesian preorder is a set A together with a preorder
C, two distinguished elements T and L, and two binary operations
M and U, such that:

. T is a top;

. for any a,b€ A, aMbis a glb of {a,b}; and

a

b. 1 is a bottom;

c

d. for any a,b€ A, alUb is a lub of {a,b}.

(10) Basics of Strict Bicartesian Preorders

a. Another name for strict bicartesian preorders is bounded prelattices.
b. A bounded lattice is the same thing as a strict bicartesian order.

c. Strict bicartesian preorders satisfy all the equations for bounded lattices, with
equality replaced by equivalence.
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(11) Definition (Strict Bicartesian Closed Preorder)
A strict bicartesian closed preorder is a strict bicartesian pre-
order (with same notation as above) together with an additional
binary operation = such that, for any a,b € A, a = b is a relative
pseudocomplement (rpc) of a and b (relative to the given glb
operation M), i.e.

a = b is a greatest member of the set {c€ A | alcC b}.

(12) Basics of Strict Bicartesian Closed Preorders
a. Another name for strict bicartesian closed preorders is pre-heyting alge-
bras.
b. A heyting algebra is the same thing as a strict bicartesian closed order.

c. Strict bicartesian closed preorders satisfy all the equations for heyting alge-
bras, with equality replaced by equivalence.
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(13) Definition (Strict Boolean Preorder)
A strict boolean preorder is a strict bicartesian closed preorder
(with same notation as above) together with an additional unary
operation — such that, for every a € A,
a. \a=a= 1;and

b. =—a = a.
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(14) Summary of Strict Boolean Preorders

Putting all the pieces together: a strict boolean preorder is a set A
together with a preorder C, two distinguished elements T and 1, a
unary operation —, and three binary operations N, LI, and =, such
that

a. [ is a top;
1 is a bottom,;
Mis a glb operation;
Ll is a lub operation;

= is an rpc operation relative to IM;

- 0o 2 0 T

for every a € A,
i. ma =a= 1; and

1. ——a = a.
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(15) Basic Fact about Strict Boolean Preorders

a. Another name for strict boolean preorders is pre-boolean algebras.
b. A boolean algebra is the same thing as a strict boolean order.

c. Strict boolean preorders satisfy all the equations for boolean algebras, with
equality replaced by equivalence.

d. The condition (13b) in the definition of strict boolean preorder can be re-
placed by the condition that, for all a € A,
ald—-a=T.
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(16) Tonmicity (aka Functoriality) of Boolean Operations
In a strict boolean preorder:

a. M and LJ are monotonic (aka covariant) in both arguments;

b. = is antitonic (aka contravariant) in the first argument and monotonic in
the second; and

c. —is antitonic.

Le.,if a C band c C d, then:

a. allcCbMNdand alcC bUd,
b. b=cCa=d; and
c. —bC —a.
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(17) Substitutivity of Boolean Operations

An immediate corollary of Tonicity is that, in a strict boolean pre-
order, the boolean operations respect equivalence, i.e. if a = b and
c =d, then

a. allc=bnd;

b. aldec=0bUd;

c. b=c=a=d; and

d

. —b = —a.

(18) Caveat about Tonicity and Substitutivity
a. It’s important to remember that tonicity and substitutivity are special prop-
erties possessed by the boolean operations.

b. That is, not just any old operation on a strict boolean preorder can be ex-
pected to have these properties.

c. That would be like expecting every function from the reals to the reals to be
either nondecreasing or nonincreasing.

d. This will be directly relevant to our analysis of Logical Omniscience.
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(19) Generalizing Ultrafilters to Strict Boolean Preorders
In a strict boolean preorder, a set U C A is called an ultrafilter of
A iff the following three conditions hold for all a,b € A:

a. if a,b € U then aMbe U;
b. if a € U and a C b, then b € U; and
c. For every a € A, either a € U or —a € U, but not both.

Note 1: It follows from the definitions that T € U, but L ¢ U.

Note 2: Compare this definition with the one for power set algebras,
to see in what sense it is a generalization.
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(20) (Non-)Principal Ultrafilters Generalized
In a strict boolean preorder:
a. An ultrafilter is called principal iff it has a least element (called the gener-
ator), and nonprincipal otherwise.

b. The principal ultrafilters are the sets of the form {x € A | a C x} where a is
an atom (i.e. a member of A such that, for any b€ A, if b C a but b # a,
then b= 1).

c. If A has only a finite number of equivalence classes (with respect to the
equivalence induced by the preorder), then every ultrafilter is principal.

d. But otherwise, it can be proved in ZFC that not every ultrafilter is principal.
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(21) Stone’s Lemma and its Consequences

a. It can be proved in ZFC that for any a, b in a strict boolean preorder, a C b
iff every ultrafilter with a as a member also has b as a member. [Note: the
only if” direction follows from the definition of ultrafilter.|

b. This is a very slight generalization of the principal lemma that Marshall Stone
used to prove:

Stone Representation Theorem: Any boolean algebra can be isomorphi-
cally embedded into the power set of the set of its ultrafilters, by mapping
each element to the set of ultrafilters containing it. (This mapping is called
the Stone embedding.)

c. As we'll see, Stone’s Lemma is the foundation on which our modelling of Soft
Actualism (and once we logicize everything, hyperintensional PWS) will be
built.

d. An immediate corollary of Stone’s Lemma is the following:

Boolean Equivalence Theorem: Two elements of a strict boolean pre-
order are equivalent (relative to the equivalence relation induced by the pre-
order) iff they belong to the same ultrafilters.
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(22) A Historical Footnote

a.

The Stone Representation Theorem is the foundation for the the theory of
n-ary boolean operators—and the accompanying algebraicization of modal
logic—worked out by Tarski, McKinsey, and Jénsson in the 1940’s and early
1950’s.

In this line of work, worlds are ultrafilters, not primitives.

c. Kripke’s (1959) modal semantics is essentially the same (though Kripke was

not then aware of the earlier development); Kripke’s complete assignments
of truth values to formulas are just characteristic functions of ultrafilters of
formulas.

Kripke acknowledged as much (in a footnote to his 1963).
Carnap’s (1947) state descriptions are likewise just ultrafilters of formulas.

f. This whole line from Stone 1936 up to Kripke 1959 is compatible with Soft

Actualism.
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(23) More History

a.

b.

But Kripke 1963 (for reasons not clear to me) switched to taking worlds as
primitives.

Montague (for reasons not clear to me) followed Kripke 1959, not Kripke
1963.

The pre-1963 (worlds-as-ultrafilters) approach to modal logic remains under-
appreciated (notwithstanding Goldblatt 1991), sometimes characterized as
‘uninsightful” or ‘a mess’ (for reasons not clear to me).

The development of natural language semantics might have been quite dif-
ferent if Montague had followed Kripke 1959 (or Tarski and Jénsson 1951)
instead of Kripke 1963.
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MODELLING SOFT ACTUALISM
WITH A STRICT BOOLEAN PREORDER
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(24) Review of Strict Boolean Preorders

Recall from (14) above that a strict boolean preorder is a set A
together with a preorder C, two distinguished elements T and 1, a
unary operation —, and three binary operations N, LI, and =, such
that

a. [ is a top;
1 is a bottom,;
Mis a glb operation;
Ll is a lub operation;

= is an rpc operation relative to IM;

-0 2 o T

for every a € A,
i. ma =a= 1; and
il. =—a = a.
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(25) Modelling Soft Actualism

0 T

=

02

~ .

We use a strict boolean preorder A, but not a power set algebra.
The propositions are the elements of A.

Entailment is the preorder. Nothing makes it antisymmetric.
Truth-conditional equivalence is mutual entailment.

The meanings of analytically true sentences are tops (i.e. equivalent to T).
Nothing makes them equal to T.

The meanings of analytically false sentences are bottoms (i.e. equivalent to
1). Nothing makes them equal to L.

The meaning of and is I
The meaning of oris L.
The meaning of if ... then is =-.

. The meaning of it is not the case that is —.
. The worlds are all the ultrafilters (not just the principal ones).

For a proposition to be true at a world is to a set-theoretic member of it, not
the other way around.
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(26) Entailment and Worlds

a. As stated above, we model entailment as the preorder C.

b. But entailment is supposed to be the relation that holds between two propo-
sitions a and b when, no matter how things are, if a is true when things are
that way, so is b.

c. This is just as it should be, because in this setting, Stone’s Lemma just says
that a entails b iff b is true in every world where a is true.

d. This is why we said (in (21c) above) that Stone’s Lemma is the foundation
on which our modelling of Soft Actualism is built.
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(27) Some Soft-Actualist Solutions
We can now see how Soft Actualism solves three problems:

a. one part of the Granularity Problem, viz. Logical Omnisicence
b. the Nonprincipal Ultrafilters Problem
c. the Omniscience (Simpliciter) of Paris Hilton
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(28) The Logical Ominscience Problem Solved

a.

Suppose, e.g. a is the meaning expressed by Paris Hilton is Paris Hilton,
and b is the meaning expressed by whichever sentence is true, the Riemann
Hypothesis or its denial.

Even though a and b are both true at every world, nothing in Soft Actualism
forces them to be the same proposition (as they would have to be in standard
PWS).

Now let f be the propositional operator expressed by Paris Hilton knows
that . ... Then, even though a and b are equivalent, nothing forces f(a) and
f(b) to be equivalent, since there is no reason to think f is tonic (functorial);
there is no general principal of substitutivity for operators on a strict boolean
preorder.

So there is no reason why there could not be an ultrafilter that has f(a) as
a member but not f(b).

So it might well be that Paris Hilton knows that Paris Hilton is Paris Hilton,
without knowing whether the Riemann Hypothesis is true.
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(29) The Nonprincipal-Ultrafilters Problem Solved

a. The problem in standard PWS is that the only ultrafilters that correspond
to (primitive) worlds are the principal ones.

b. But in Soft Actualism, there are no primitive worlds, just ultrafilters, and so
the principal ultrafilters (if indeed there are any, which is far from certain)
have no special status.

c. In particular, the nonprincipal ultrafilters are ‘first-class citizens’, from the
point of view of ‘counting’ as worlds.
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(30) The Paris Hilton Ominscience Problem Solved

a. The problem in standard PWS is that Paris Hilton seems to know the propo-
sition which is the conjunction of all the propositions that are true in the
actual world.

b. But in Soft Actualism, there is no reason to think that such a proposition
even exists.

c. For such a proposition to exist is equivalent to the actual world being a
principal ultrafilter, with that proposition being the atom that generates it.

d. But there is no reason to think that the actual world is a principal ultrafilter.

e. Indeed, there is not even any reason to think that the preorder of propositions
has any principal ultrafilters!

f. To put it another way, the preorder of propositions might well be atomless.
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(31) Where do we Go from Here?

a. We appear to be off to a promising start.

b. But it will be easier to extend our semantic theory in a precise and consistent
way if we work inside a formal theory instead in the metalanguage.

c. For this, we will do what lingustic semanticists usually do, and work inside
a higher-order logic (HOL).

d. To get started, we first lay out the typed lambda calculus (TLC) that our
HOL is built upon.
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LECTURE FOUR:

THE POSITIVE
TYPED LAMBDA CALCULUS
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(32) Typed Lambda Calculi (TLCs)

Originated by Church and Curry in 1930’s

Can be viewed in a proof-theoretic (Curry-Howard) way (not so
relevant for us here ) or in a model-theoretic (Henkin-Montague)
way (crucial for us)

Underlies higher-order logic (HOL), the tool of choice for for-
malizing theories of natural language meaning

Different kinds of TLCs, depending on what kind of logic the
type system is based on

The TLC we will use, positive TLC, is based on positive
intutitionistic propositional logic (PIPL).
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(33) TLC Overview: Syntax
Syntactically, a TLC consists of:

a. a set of types;

b. for each type, a set of terms of that type; and

c. an equivalence relation on terms (‘lambda equivalence’)
Caveat: Lambda equivalence relation must not be confused with the equiv-
alence relation on meanings of having the same extension at every world (of
which mutual entailment of propositions is a special case)! In hyperinten-

sional semantics, terms denoting meanings which are equivalent in this sense
are generally not lambda-equivalent.
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(34) TLC Overview: Semantics
In a set-theoretic interpretation of a TLC:

a. types are interpreted as sets;
b. a term of a given type is interpreted as a member of the set that interprets

that type; and
c. lambda-equivalent terms have the same interpretation.
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(35) Types of Positive TLC

a. Some basic types are given. The ones we will use are:
Prop, for propositions, the kind of meanings expressed by utterances
of declarative sentences
Ind, for individuals, the kind of meanings expressed by utterances of
names
Bool, for booleans aka truth values, the kind of things that can be
extensions of propositions
Ent, for entities, the kind of things that can be extensions of individual
concepts

b. T is a type, called the unit type

c. there are two binary type constructors A (conjunction) and O (implication),

so that if A and B are types, then so are A A B and A D B.

Caveat: Linguists usually write (A, B) instead of A D B. This obscures the
implicative character of the constructor.
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(36) Terms of Positive TLC
Note: we write ‘- a : A’ to mean that term a is of type A.
a. There can be nonlogical constants of any type. In our setting, many of
these will be interpreted as word meanings.
b. There is a logical constant - * : T.
c. For each type A there are variables - 22 : A (i € w).

d. There are term constructors (-, -) (pairing), 7 (left projection), 7’ (right
projection), and app (application), such that:

i.ifFa:Aandtb: B, then - (a,b) : AN B
ii. ifFa: AA B, thent7(a): Aand F 7'(a) : B
iii. f - f: AD Bandta: A, then - app(f,a): B

e. There is a variable binder A\ (lambda) such that if - = : A is a variable
and Fb: B, then - X\,b: ADB
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(37) Notes on Positive TLC Terms

a. Usually app(f,a) is abbreviated to f(a). But conceptually it is important
to remember that application is a term constructor (modus ponens in the
Curry-Howard perspective).

b. The logical constant % will be intepreted as the ‘vacuous meaning’ (e.g. of
dummy pronouns).

c. The presence of the pairing constructor obviates the need to curry functions
(while not disallowing it). E.g. we can have nonlogical constants that are
interpreted as word meanings such as:

F Mary' : Ind

F bark’ : Ind D Prop

F bite' : (Ind A Ind) D Prop

F give' : (Ind A Ind A Ind) D Prop
F believe’ : (Ind A Prop) D Prop
 bother’ : (Prop A Ind) D Prop
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(38) Positive TLC Term Equivalences (Postponed)
a. Usually a TLC comes equipped with an equivalence relation on terms (lambda
equivalence) such that equivalent terms have the same model-theoretic inter-
pretation.

b. Usually this relation is described in the metalanguage with the help of an
equational calculus (‘lambda conversion’).

c. But since we will later extend our TLC to a logic with equality, we will wait
and express the term equivalences in the logic as axioms about equality.
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(39) Set-Theoretic Interpretation of Positive TLC
An interpretation I of a positive TLC assigns to to each type A a
set I(A), and to each constant - a : A a member I(a) € I(A), such
that:
a. I(T) is a singleton;
b. I(AA B) = I(A) x I(B); and
c. I(A> B) C I(A) = I(B).

45



(40) Variable Assignments (Relative to an Interpretation)

A variable assignment is a function that maps each variable z to
a member the set that interprets its type.

46



(41) Extending an Interpretation

Given a variable assignment « relative to an interpretation I, there
is a unique extension of I to all terms, written I,, such that:

o T

For each variable z, I,(x) = a(z);

for each constant a, I,(a) = I(a);

ifFa:Aandbb: B, then I,((a,b)) = (I,(a), 1.(b));

if -p: AN B, then I,(m(p)) is the first component (= projection onto I(A))
of I,(p); and I,(7'(p)) is the second component (= projection onto I(B)) of

La(p);
ifFf:AD Bandt a: A, then I,(f(a)) = (Io(f))(Ia(a)); and

f. if Fb: B, then I,(Azeab) is the function from I(A) to I(B) that maps each

s € I(A) to I3(b), where (3 is the variable assignment that coincides with «
except that G(z) = s.
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(42) Observations about Interpretations

a. For any term a, I,(a) depends only on the restriction of « to the free variables
of a.

b. In particular, if a is a closed (i.e. has no free variables), then I,(a) is inde-
pendent of o so we can simply write I(a).

c. Thus, an interpretation for the basic types and constants extends uniquely to
all types and all closed terms.
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