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Decoding 

  The decoder … 

  uses source sentence f and phrase table to estimate  
    P(e|f) 

  uses LM to estimate P(e) 

  searches for target sentence e that maximizes  
    P(e)*P(f|e) 



Decoding 

  Decoding is: 
 translating words/chunks (equivalence) 
 reordering the words/chunks (fluency) 

  For the models we‘ve seen, decoding is NP-complete, i.e. 
enumerating all possible translations for scoring is too 
computationally expensive.  

  Heuristic search methods can approximate the solution. 

  Compute scores for partial translations going from left to 
right until we cover the entire input text. 
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Beam Search 

1.  Collect all translation options: 
a)  der Hund schläft 
b)  der = the / that / this; Hund = dog / hound / puppy / 

pug ; schläft = sleeps / sleep / sleepy 
c)  der Hund = the dog / the hound 

2.  Build hypotheses, starting with the empty hypothesis: 
1.  der = {the, that, this} 
2.  der Hund = {the + dog, the + hound, the + puppy, the 

+pug, that + dog, that + hound, that + puppy, that +pug, 
this + dog, this + hound, this + puppy, this +pug, the 
dog, the hound} 

3.  ... 
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Beam Search II 

  In the end, we consider those hypotheses which cover the 
entire input sequence. 

  Each hypothesis is annotated with the probability score 
that comes from using those translation options and the 
language model score. 

  The hypothesis with the best score is our final translation. 
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Search Space 

  Examining the entire search space is too expensive: it has 
exponential complexity. 

 We need to reduce the complexity of the decoding 
problem. 

  Two approaches: 

 Hypothesis recombination 
 Pruning 
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Hypothesis Recombination 

  Translation options can create identical (partial) 
hypotheses: 
 the + dog vs. the dog 

 We can share common parts by pointing to the same final 
result: 
 [the dog] ... 

  But the probability scores will be different: using two 
options will yield a different score than using only one 
(larger) option.  
à  drop the lower-scoring option 
à  can never be part of the best-scoring hypothesis 
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Pruning 

  If we encounter a partial hypothesis that‘s apparently 
worse, we want to drop it to avoid wasting computational 
power. 

  But: the hypothesis might redeem itself later on and 
increase its probability score. 

 We don‘t want to prune too early or too eagerly to avoid 
search errors. 

  But we can only know for sure that a hypothesis is bad if 
we construct it completely. 

 We need to make some educated guesses. 
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Stack Decoding 

 Organise hypotheses in stacks. 

 Order them e.g. by number of words translated. 

 Only if the number grows too large, drop the worst 
hypotheses.  

  But: is the sorting (number of translated words, ...) enough 
to tell how good a hypothesis is? 
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Pruning Methods I 

  Histogram pruning: 

 Keep N hypotheses in the stack 

 We have stack size N, a number of translation options T 
and the length of the input sentence L: 
 O(N*T*L) 

  T is linear to L è O(N*L2) 
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Pruning Methods II 

  Threshold pruning: 
 Considers difference in score between the best and the 

worst hypotheses in the stack. 

 We declare a fixed threshold α by which a hypothesis is 
allowed to be worse than the best hypothesis. 

  α declares the beam width in which we perform our search. 
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Future Cost 

  To avoid pruning too eagerly, we cannot solely rely on the 
probability score. 

 We approximate the future cost of creating the full 
hypothesis by the outside cost (rest cost) estimation: 
 Translation model: look up the translation cost for a 

translation option from the phrasetable 
 Language model: compile score without context 

(unigram, ...) 
 We can now estimate the cheapest cost for translating any 

input span. 
   è combine with probability score to sort hypotheses 
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Other Decoding Algorithms 

  A* Search 
 Similar to beam search 
 Requires cost estimate to never overestimate the cost 

 Greedy Hill-Climbing Decoding 
 Generate a rough initial translation. 
 Apply changes until translation can‘t be improved 

anymore. 

  Finite State Transducers 
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Search Errors vs. Model Errors 

 We need to distinguish error types when looking at wrong 
translations. 

  Search error: 
 the decoder fails to find the optimal translation 

candidate in the model 

 Model error: 
 the model itself contains erroneous entries 
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Advanced SMT models 

 Word-based models (IBM1-5) don‘t capture enough 
information. 

  The unit word is too small: use phrases instead. 

  Phrase-based models are doing better è can capture 
collocations and multi-word expressions: 
 kick the bucket = den Löffel abgeben 
 the day after tomorrow = übermorgen 
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Phrase-Based SMT 

  E* = argmaxE P(E|F) = argmaxE P(E) * P(F|E) 
  In word-based models (IBM1): 
 P(F|E) is defined as Σp(fi|ej) where fi and ej are the i-th 

French and j-th English word 

  In the phrase-base models, we no longer have words as 
the basic units, but phrases which may contain up to n 
words (current state of the art uses 7-gram phrasetables): 
 P(F|E) is now defined over phrases fin and ej

m where fin 
contains the span of the i-th to the n-th French word and 
ej

m the j-th to the m-th English word: 
 P(F|E) = Π ϕ(fin|ej

m) d(starti – endi-1 – 1)   
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Phrase Extraction 

  Phrases are defined as continuous spans. 

  The word alignment is key: 
 we only extract phrases that form continuous spans on 

both sides 

  Translation probability ϕ(f|e) is modeled as the relative 
frequency: 
 ϕ(f|e) = count(e, f) / Σfi count(e, fi) 
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All Problems Solved? 

  But phrase-based models have one big constraint: the 
length of the phrases: currently we work with 7-grams for 
phrases and 5-gram LMs in state of the art systems 
 The larger the n-gram, the more data you need to 

prevent data sparseness 
 We always need more and more data 

 We need to make better use of the data we have 
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Factored Models 

  In factored models we introduce additional information 
about the surface words: 
 dangerous dog à dangerous|dangerous|JJ|n.sg dog|

dog|NN|n.sg 
 instead of the word use word|lemma|POS|morphology 

  Factors allow us to generalise over the data: even if a word 
is unseen, if we have seen similar factors, this works in our 
favour: 
 Haus|Haus|NN|n.sg è house|house|NN|n.sg 
 Hauses|Haus|NN|g.sg? 

Language Technology II (SS 2013): Machine Translation 19 cfedermann@coli.uni-saarland.de 



More And More Possibilities 

  Can use different translation models: 
 lemma to lemma  
 POS to POS 

 We can even build more differentiated models: 
 Translate lemma to lemma 
 Translate morphology and POS 
 Generate word form lemma and POS/morphology 
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Linguistic Information 

  Complete freedom which information you use: 
 lemma, morphology 
 POS 
 named entities 
 ... 

  But which information do we really need? 
 In Arabic you can get results from using stems (first 4 

characters) and morphology à cannot be generalised 
 To get good factors/a good setup, you need to know 

your language(s) well 
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Factored Models - Problems 

  To get the factors, you need a list of linguistic resources: 
 lemmatiser 
 part of speech tagger 
 morphological analyser 
 ... 

  These resources may not always be available for your 
language pair of choice. 

  Depending on which factors you use, your risk of data 
sparseness increases. 

  Still suffers from many of the problems of phrase-based 
SMT 
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Tree-Based Models 

  There are two sorts of tree-based models: 
 hierarchical phrase-based 
 syntax-based 

  Syntax-based models make use of a grammar: 
 ne X1 pas à not X1 

 read X1 à habe X1 gelesen 

 We now have non-terminals (X1) which can be substituted 
by any phrase in our grammar/phrase-table. 

  Syntax-based models require a corpus that has already 
been parsed as training input. 
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Syntax-based Models 

  The decoder automatically learns a mapping between 
source and target side annotation: 
 you can parse both or only one side 
 score(tree, e, f) = Πi rulei 

  The basic syntax structures are supposed to capture 
especially long-distance dependencies 

  Data sparseness: 
 „relax“ the rules 
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Grammars 

  Usually uses phrase structure grammars. 

  Dependency grammars can also be used, but: 
 Are trees in different languages really isomorphic? 

  In SMT: 
 PSG: synchronous context free grammar (SCFG) 
 A SCFG consists of pairs of trees, one for each 

language. 
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Scoring 

 We can consider different probability distributions: 
 Joint rule probability:  

 p(LHS, RHSf, RHSe) 
 Rule application probability:  

 p(RHSf, RHSe | LHS) 
 Direct translation probability:  

 p(RHSe|RHSf, LHS) 
 Noisy channel probability:  

 p(RHSf|RHSe, LHS) 
 Lexical translation probability:  

 Πe in RHSe p(ei|RHSf, a) 
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Hierarchical Phrase-Based 

  If we don‘t have a parser ready, can we learn rules 
automatically? 
 Yes: R : X à (γ, α, ~) 
 X à dangerous X1 ||| gefährlicher X1 ||| f1 f2 f3 

  Hierarchical models don‘t put any restrictions of which 
words/phrases can be replaced by a non-terminal: 
 John likes Anna à John mag Anna 
 John likes X à John mag X 
 John X Anna à John X Anna 
 X likes à X mag 
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Chart Parsing 

  Instead of using beam search, we apply an algorithm 
initially developed for chart parsing in our decoder. 

 
Grammar: 
 
DET à der | the  N à Hund | dog  V à schläft | sleeps 
DET à der | that  N à Hund | puppy  V à schläft | sleep 
S à NP VP   NP à DET N  VP à V NP 
V à V 
 
Input: der Hund schläft 
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Chart Parsing 
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der 
DET 

schläft 
V 

Hund 
N 

NP VP 
S 

sleeps 
sleep 

dog 
puppy 

the 
that 

VP NP 



Tree-Based Models - Problems 

  Data sparseness: especially for syntax-based models you 
need enough data. 
 How much does the parser influence translation quality? 

  Tree-based models focus on getting a better sentence 
structure, but what about morphology? 
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