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Decoding 

  The decoder … 

  uses source sentence f and phrase table to estimate  
    P(e|f) 

  uses LM to estimate P(e) 

  searches for target sentence e that maximizes  
    P(e)*P(f|e) 



Decoding 

  Decoding is: 
 translating words/chunks (equivalence) 
 reordering the words/chunks (fluency) 

  For the models we‘ve seen, decoding is NP-complete, i.e. 
enumerating all possible translations for scoring is too 
computationally expensive.  

  Heuristic search methods can approximate the solution. 

  Compute scores for partial translations going from left to 
right until we cover the entire input text. 
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Beam Search 

1.  Collect all translation options: 
a)  der Hund schläft 
b)  der = the / that / this; Hund = dog / hound / puppy / 

pug ; schläft = sleeps / sleep / sleepy 
c)  der Hund = the dog / the hound 

2.  Build hypotheses, starting with the empty hypothesis: 
1.  der = {the, that, this} 
2.  der Hund = {the + dog, the + hound, the + puppy, the 

+pug, that + dog, that + hound, that + puppy, that +pug, 
this + dog, this + hound, this + puppy, this +pug, the 
dog, the hound} 

3.  ... 
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Beam Search II 

  In the end, we consider those hypotheses which cover the 
entire input sequence. 

  Each hypothesis is annotated with the probability score 
that comes from using those translation options and the 
language model score. 

  The hypothesis with the best score is our final translation. 
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Search Space 

  Examining the entire search space is too expensive: it has 
exponential complexity. 

 We need to reduce the complexity of the decoding 
problem. 

  Two approaches: 

 Hypothesis recombination 
 Pruning 
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Hypothesis Recombination 

  Translation options can create identical (partial) 
hypotheses: 
 the + dog vs. the dog 

 We can share common parts by pointing to the same final 
result: 
 [the dog] ... 

  But the probability scores will be different: using two 
options will yield a different score than using only one 
(larger) option.  
à  drop the lower-scoring option 
à  can never be part of the best-scoring hypothesis 
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Pruning 

  If we encounter a partial hypothesis that‘s apparently 
worse, we want to drop it to avoid wasting computational 
power. 

  But: the hypothesis might redeem itself later on and 
increase its probability score. 

 We don‘t want to prune too early or too eagerly to avoid 
search errors. 

  But we can only know for sure that a hypothesis is bad if 
we construct it completely. 

 We need to make some educated guesses. 
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Stack Decoding 

 Organise hypotheses in stacks. 

 Order them e.g. by number of words translated. 

 Only if the number grows too large, drop the worst 
hypotheses.  

  But: is the sorting (number of translated words, ...) enough 
to tell how good a hypothesis is? 
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Pruning Methods I 

  Histogram pruning: 

 Keep N hypotheses in the stack 

 We have stack size N, a number of translation options T 
and the length of the input sentence L: 
 O(N*T*L) 

  T is linear to L è O(N*L2) 
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Pruning Methods II 

  Threshold pruning: 
 Considers difference in score between the best and the 

worst hypotheses in the stack. 

 We declare a fixed threshold α by which a hypothesis is 
allowed to be worse than the best hypothesis. 

  α declares the beam width in which we perform our search. 
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Future Cost 

  To avoid pruning too eagerly, we cannot solely rely on the 
probability score. 

 We approximate the future cost of creating the full 
hypothesis by the outside cost (rest cost) estimation: 
 Translation model: look up the translation cost for a 

translation option from the phrasetable 
 Language model: compile score without context 

(unigram, ...) 
 We can now estimate the cheapest cost for translating any 

input span. 
   è combine with probability score to sort hypotheses 
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Other Decoding Algorithms 

  A* Search 
 Similar to beam search 
 Requires cost estimate to never overestimate the cost 

 Greedy Hill-Climbing Decoding 
 Generate a rough initial translation. 
 Apply changes until translation can‘t be improved 

anymore. 

  Finite State Transducers 
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Search Errors vs. Model Errors 

 We need to distinguish error types when looking at wrong 
translations. 

  Search error: 
 the decoder fails to find the optimal translation 

candidate in the model 

 Model error: 
 the model itself contains erroneous entries 
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Advanced SMT models 

 Word-based models (IBM1-5) don‘t capture enough 
information. 

  The unit word is too small: use phrases instead. 

  Phrase-based models are doing better è can capture 
collocations and multi-word expressions: 
 kick the bucket = den Löffel abgeben 
 the day after tomorrow = übermorgen 
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Phrase-Based SMT 

  E* = argmaxE P(E|F) = argmaxE P(E) * P(F|E) 
  In word-based models (IBM1): 
 P(F|E) is defined as Σp(fi|ej) where fi and ej are the i-th 

French and j-th English word 

  In the phrase-base models, we no longer have words as 
the basic units, but phrases which may contain up to n 
words (current state of the art uses 7-gram phrasetables): 
 P(F|E) is now defined over phrases fin and ej

m where fin 
contains the span of the i-th to the n-th French word and 
ej

m the j-th to the m-th English word: 
 P(F|E) = Π ϕ(fin|ej

m) d(starti – endi-1 – 1)   
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Phrase Extraction 

  Phrases are defined as continuous spans. 

  The word alignment is key: 
 we only extract phrases that form continuous spans on 

both sides 

  Translation probability ϕ(f|e) is modeled as the relative 
frequency: 
 ϕ(f|e) = count(e, f) / Σfi count(e, fi) 
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All Problems Solved? 

  But phrase-based models have one big constraint: the 
length of the phrases: currently we work with 7-grams for 
phrases and 5-gram LMs in state of the art systems 
 The larger the n-gram, the more data you need to 

prevent data sparseness 
 We always need more and more data 

 We need to make better use of the data we have 
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Factored Models 

  In factored models we introduce additional information 
about the surface words: 
 dangerous dog à dangerous|dangerous|JJ|n.sg dog|

dog|NN|n.sg 
 instead of the word use word|lemma|POS|morphology 

  Factors allow us to generalise over the data: even if a word 
is unseen, if we have seen similar factors, this works in our 
favour: 
 Haus|Haus|NN|n.sg è house|house|NN|n.sg 
 Hauses|Haus|NN|g.sg? 
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More And More Possibilities 

  Can use different translation models: 
 lemma to lemma  
 POS to POS 

 We can even build more differentiated models: 
 Translate lemma to lemma 
 Translate morphology and POS 
 Generate word form lemma and POS/morphology 
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Linguistic Information 

  Complete freedom which information you use: 
 lemma, morphology 
 POS 
 named entities 
 ... 

  But which information do we really need? 
 In Arabic you can get results from using stems (first 4 

characters) and morphology à cannot be generalised 
 To get good factors/a good setup, you need to know 

your language(s) well 
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Factored Models - Problems 

  To get the factors, you need a list of linguistic resources: 
 lemmatiser 
 part of speech tagger 
 morphological analyser 
 ... 

  These resources may not always be available for your 
language pair of choice. 

  Depending on which factors you use, your risk of data 
sparseness increases. 

  Still suffers from many of the problems of phrase-based 
SMT 
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Tree-Based Models 

  There are two sorts of tree-based models: 
 hierarchical phrase-based 
 syntax-based 

  Syntax-based models make use of a grammar: 
 ne X1 pas à not X1 

 read X1 à habe X1 gelesen 

 We now have non-terminals (X1) which can be substituted 
by any phrase in our grammar/phrase-table. 

  Syntax-based models require a corpus that has already 
been parsed as training input. 

Language Technology II (SS 2013): Machine Translation 23 cfedermann@coli.uni-saarland.de 



Syntax-based Models 

  The decoder automatically learns a mapping between 
source and target side annotation: 
 you can parse both or only one side 
 score(tree, e, f) = Πi rulei 

  The basic syntax structures are supposed to capture 
especially long-distance dependencies 

  Data sparseness: 
 „relax“ the rules 
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Grammars 

  Usually uses phrase structure grammars. 

  Dependency grammars can also be used, but: 
 Are trees in different languages really isomorphic? 

  In SMT: 
 PSG: synchronous context free grammar (SCFG) 
 A SCFG consists of pairs of trees, one for each 

language. 
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Scoring 

 We can consider different probability distributions: 
 Joint rule probability:  

 p(LHS, RHSf, RHSe) 
 Rule application probability:  

 p(RHSf, RHSe | LHS) 
 Direct translation probability:  

 p(RHSe|RHSf, LHS) 
 Noisy channel probability:  

 p(RHSf|RHSe, LHS) 
 Lexical translation probability:  

 Πe in RHSe p(ei|RHSf, a) 
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Hierarchical Phrase-Based 

  If we don‘t have a parser ready, can we learn rules 
automatically? 
 Yes: R : X à (γ, α, ~) 
 X à dangerous X1 ||| gefährlicher X1 ||| f1 f2 f3 

  Hierarchical models don‘t put any restrictions of which 
words/phrases can be replaced by a non-terminal: 
 John likes Anna à John mag Anna 
 John likes X à John mag X 
 John X Anna à John X Anna 
 X likes à X mag 
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Chart Parsing 

  Instead of using beam search, we apply an algorithm 
initially developed for chart parsing in our decoder. 

 
Grammar: 
 
DET à der | the  N à Hund | dog  V à schläft | sleeps 
DET à der | that  N à Hund | puppy  V à schläft | sleep 
S à NP VP   NP à DET N  VP à V NP 
V à V 
 
Input: der Hund schläft 
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Chart Parsing 
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der 
DET 

schläft 
V 

Hund 
N 

NP VP 
S 

sleeps 
sleep 

dog 
puppy 

the 
that 

VP NP 



Tree-Based Models - Problems 

  Data sparseness: especially for syntax-based models you 
need enough data. 
 How much does the parser influence translation quality? 

  Tree-based models focus on getting a better sentence 
structure, but what about morphology? 

 

Language Technology II (SS 2013): Machine Translation 30 cfedermann@coli.uni-saarland.de 


