The Effects of Ageing and Visual Noise on Conceptual Integration during Sentence Reading

> Aline Becker Seminar: "Language Comprehension and Aging" 11.12.2014

The Effortfulness hypothesis

The Effortfulness hypothesis in sentence processing

The Effortfulness hypothesis in sentence processing

Word-level processing

 Noise: Increase Sensory Challenge

 Conceptual integration

Today's issue

The effects of ageing and visual noise on conceptual integration during sentence reading

Xuefei Gao¹, Brian R. Levinthal², and Elizabeth A. L. Stine-Morrow¹

¹Beckman Institute & Department of Educational Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA ²Department of Psychology, Northwestern University, Evanston, IL, USA

Hypotheses

Experiment 1: Participants

	Young		Older
n	32	\leftrightarrow	31
Mean age in yrs (SD)	23.8 (4.0)	-	69.5 (7.2)
Mean education in yrs (SD)	16.2 (1.9)	\leftrightarrow	16.0 (2.6)
Vocabulary knowledge WAIS-R (SD)	53.1 (8.1)	\leftrightarrow	51.3 (8.5)
Working memory span (SD)	5.7 (1.2)		4.3 (1.0)
Vision	Normal or corrected to normal	\leftrightarrow	Normal or corrected to normal
Visual Acuity			

Block 1

Noise Condition 1

- 4 practice trials
- warm-up trials
- 8 sentences
- Recall Test
- 8 sentences
- Recall Test
- 8 sentences
- Recall Test

Block 2

Noise Condition 2

- 4 practice trials
- warm-up trials
- 8 sentences
- Recall Test
- 8 sentences
- Recall Test
- 8 sentences
- Recall Test

Block 3

Noise Condition 3

- 4 practice trials
- warm-up trials
- 8 sentences
- Recall Test
- 8 sentences
- Recall Test
- 8 sentences
- Recall Test

Ready?

+

In

many

species

In many species it is the females who shape evolution through their subtle exercise of choice in mating.

They often choose mates who are bolder bolder or brightly colored.

Word-level features: numbers of syllables word frequency Text-level features: word as a newly introduced concept in the sentence cumulative conceptual load at sentence boundaries

Experiment 1: Results

gure 1. Resource allocated to word-level and textbase-level processing as a function of visual noise for older and younger adults in theriment 1.

Patterns of Resource Allocation

Three-way interaction of age, noise and level of sentence processing: Noise produced dissociation of word and text based processing only in older adults

Recall Performance Only post-Hoc analyses revealed Age*Noise interaction: Decrease in Recall performance for old adults

12/11/2014

Experiment 2: Participants

	Young		Older
n	18	\leftrightarrow	18
Mean age in yrs (SD)	21.5 (4.4)	-	67.9 (4.9)
Mean education in yrs (SD)	14.7 (1.7)	\leftrightarrow	15.2 (2.7)
Vocabulary knowledge WAIS-R (SD)	45.3 (5.3)	\leftrightarrow	46.6 (6.9)
Working memory span (SD)	5.5 (1.2)		4.3 (0.9)
Vision	Normal or corrected to normal	\leftrightarrow	Normal or corrected to normal
Visual Acuity			

Experiment 2: Results

Patterns of Resource Allocation Strong interaction of noise and level of sentence processing, But did not vary with age

Recall Performance No Age*Noise Interaction Decreasing Recall with increasing noise in both age groups

Summary

Effortfulness-Hypotheses

- External noise (Age)
- Internal noise (conditions)
- Cumulation (Interaction in Experiment 1)
- Impact on both textbase processes and Recall

But...

• What is the reason for this ageing effect?

	Young		Older
Vision	Normal or corrected to normal	\leftrightarrow	Normal or corrected to normal
Visual Acuity			

Thank you

- Gao, X., Levinthal, B.R., Stine-Morrow, E.A.L. (2012). The effects of ageing and visual noise on conceptual integration during sentence reading, *The Quarterly Journal of Experimental Psychology*, *65(9)*, 1833-1847.
- Rabbitt, P.M.A. (1968). Channel capacity, intelligibility and immediate memory. *Quarterly Journal of Experimental Psychology, 20,* 241-248.
- Wingfield, A., Tun, P.A., McCoy, S.L. (2005). Hearing loss in older adults: What it is and how it interacts with cognitive performance. *Current Directions in Psychological Science*, *14*, 144-148.