
Practical Veri�cation Strategies

for Dialogue Management

Míra Janí£ek

November 20, 2008



Veri�cation × Grounding

in general, grounding is the process of converging to common
knowledge

in practical dialogue systems, however, it is often reduced to
veri�cation (con�rmation) of system's recognition of user
utterances



Schematically

two dialogue participants, S and H

S has just uttered or is uttering utt to H:

S
utt−→ H

H gives S feedback fb:

S
fb←− H



fb in Human-Human Communication

level of action

contact � S and H have established a channel of
communication
perception � H perceives utt
understanding � H has understood utt

acceptance � H has accepted and integrated utt

polarity

positive � positive signal that the given level is achieved

negative � negative signal (e.g. no understanding)

checking � between the two: H has a hypothesis, but needs to
check if it is valid



fb in Human-Computer Communication

in order to verify that the system has understood utt correctly,
it needs to convey its understanding of utt back to the user
and ask him if it is OK

we want the dialogue to be as �uent as possible

if there is a problem, whose fault is it?

Either of the parties may be responsible:

the system: poor speech recognition performance

the user: incorrect assumptions about the system's capabilities



Speech Recognition Errors

good thing: the speech recognizer spits out the best
hypothesis and its score (whatever it may be)

⇒ the system is aware of recognition quality (the errors)

even better: the system may use the score for generating fb

idea: the more we believe what we've heard, the less
con�rmation we require, and the more �uent dialogue we
achieve



Con�rmation as a fb

use con�rmation as a fb

+
be as �uent as possible

expliciteness of the con�rmation ≈ low score of perceived utt



Types of Con�rmation
(San-Segundo et al., 2001)

no con�rmation ... for yes/no answers

implicit con�rmation

= the understood value of utt
+ prompt for next item

semi-implicit con�rmation

= the understood value of utt
+ command for correction
+ prompt for next item

explicit con�rmation

= the understood value of utt
+ explicit request for con�rmation

item value rejection



Determining Con�dence

(San-Segundo et al., 2001) de�ne 4 con�dence levels (CF):

w ... # of correctly recognized words in utt

e ... # of errors

CL(utt) = 1 ⇐ w � e ... very high con�dence

CL(utt) = 2 ⇐ w > e ... high con�dence

CL(utt) = 3 ⇐ w ≈ e ... low con�dence

CL(utt) = 4 ⇐ w � e ... very low con�dence



Example: Implicit Con�rmation

example:

System: Which month do you want to leave?
User : July.

System: You want to leave in July.
Which day do you want to leave?

if the follow-up question is semantically related to the
con�rmation, we may combine the two:

System: Which month do you want to leave?
User : July.

System: Which day of July do you want to leave?

this produces a more �uent dialogue.



Example: Semi-implicit Con�rmation

example:

System: Which month do you want to leave?
User : July.

System: You want to leave in July.
In case of error, please correct. ←−
Which day do you want to leave?

lengthy and unfriendly.



Example: Explicit Con�rmation

example:

System: Which month do you want to leave?
User : July.

System: Do you want to leave in July?

we may split the sentence into two:

System: Which month do you want to leave?
User : July.

System: You want to leave in July.
Is it correct?

a yes/no answer is expected.



Discussion

to make the system user-friendly, con�rmations should stick to
the formulations used by the User :

System: Which day do you want to leave?
User : This Monday.

System: Do you want to leave this Monday?

both explicit and (semi-)implicit con�rmations contain
verbatim reformulation of the User 's utterance

⇒ in a sense, they are all explicit



User's Familiarity with the System

non-skilled users might not be aware of the system's limitations

either its of language competence ... i.e. what it understands

or its conceptual (functional) limits ... i.e. what can it do

the user may even confuse one for the other

it is di�cult to recognize such states

⇒ we need to give the user some guidelines/help

but on the other hand we don't want to annoy skilled users



Possible Approach: User Modelling

the user is given an expertise rating, a skill level

the more skilled user, the less help he gets and the more �uent
the dialogue

at the beginning, the user is assumed to be slightly experienced

as the dialogue goes on, the user may either

�gain skill� if there are no problems
�lose skill� if there are



User Modelling: Example

(San-Segundo et al., 2001) use 4 skill levels, level 1 being the
non-experienced and level 4 expert user.

example:

[the system is in level 3]
System: Say the period of the day you want to travel in.

User : After lunch.

[the system recognizes �in the evening�]
System: Have you said in the evening?

User : No.

[the system decreases the level from 3 to 2]
System: Say the period of the day you want to travel in;

in the morning, in the afternoon or in the evening?
User : In the afternoon.



Possible Approach: Targeted Help
(Hockey et al., 2003)

a fall-back module that tries to help in cases when the main
dialogue system couldn't understand

two speech recognizers

the primary is grammar-based
the secondary uses a statistical language model

Targeted Help gets activated when the primary recognizer
rejects and the secondary gets a hypothesis that cannot be
parsed

⇒ handles unparsable input

its output is a help or advice to the user (assumes that the
user lacks the knowledge of the system)



Targeted Help: Error Handling

Types of errors handled:

endpointing errors

the user pressed the push-to-talk button too late, something is
missing at the beginning of the utterance
determined by looking at the grammar � is the �rst word of
the utterance a valid initial word in the grammar?
if not, an endpointing error is assumed and reported

unknown vocabulary

reports �the system doesn't understand the word X�

subcategorization mistake

e.g. �zoom in on a car� when it is only possible to �zoom in�
and �look at a car� separately
in fact a conceptual error

tries to �nd the closest valid action, compare it with the
proposed one and report it to the user


