Practical Verification Strategies
for Dialogue Management

Mira Janicek

November 20, 2008

Verification x Grounding

m in general, grounding is the process of converging to common
knowledge

m in practical dialogue systems, however, it is often reduced to
verification (confirmation) of system'’s recognition of user
utterances

Schematically

m two dialogue participants, S and H
m S has just uttered or is uttering utt to H:

utt

S—H

m H gives S feedback fb:

b

fb in Human-Human Communication

m level of action

m contact — S and H have established a channel of
communication

m perception — H perceives utt

understanding — H has understood utt

m acceptance — H has accepted and integrated utt

m polarity
m positive — positive signal that the given level is achieved
m negative — negative signal (e.g. no understanding)

m checking — between the two: H has a hypothesis, but needs to
check if it is valid

fb in Human-Computer Communication

m in order to verify that the system has understood utt correctly,

it needs to convey its understanding of utt back to the user
and ask him if it is OK

m we want the dialogue to be as fluent as possible

m if there is a problem, whose fault is it?
Either of the parties may be responsible:

m the system: poor speech recognition performance

m the user: incorrect assumptions about the system'’s capabilities

Speech Recognition Errors

m good thing: the speech recognizer spits out the best
hypothesis and its score (whatever it may be)

= the system is aware of recognition quality (the errors)
m even better: the system may use the score for generating fb
m idea: the more we believe what we've heard, the less

confirmation we require, and the more fluent dialogue we
achieve

Confirmation as a b

use confirmation as a b

|
be as fluent as possible

expliciteness of the confirmation = low score of perceived wutt

Types of Confirmation
(San-Segundo et al., 2001)

no confirmation ... for yes/no answers

implicit confirmation
= the understood value of utt
+ prompt for next item

semi-implicit confirmation
= the understood value of utt
+ command for correction
+ prompt for next item

explicit confirmation

= the understood value of utt
+ explicit request for confirmation

item value rejection

Determining Confidence

(San-Segundo et al., 2001) define 4 confidence levels (CF):

w ... # of correctly recognized words in utt
e ... # of errors

CL(utt)=1 <« w>e .. very high confidence
CL(utt) =2 <« w >e .. high confidence
CL(utt) =3 <« w=e .. low confidence
CL(utt) =4 <« w<e .. verylow confidence

Example: Implicit Confirmation

m example:

System: Which month do you want to leave?
User: July.
System: You want to leave in July.
Which day do you want to leave?

m if the follow-up question is semantically related to the
confirmation, we may combine the two:

System: Which month do you want to leave?
User: July.
System: Which day of July do you want to leave?

m this produces a more fluent dialogue.

Example: Semi-implicit Confirmation

m example:
System: Which month do you want to leave?
User: July.
System: You want to leave in July.
In case of error, please correct. —

Which day do you want to leave?

m lengthy and unfriendly.

Example: Explicit Confirmation

m example:
System: Which month do you want to leave?
User: July.

System: Do you want to leave in July?

m we may split the sentence into two:

System: Which month do you want to leave?

User: July.
System: You want to leave in July.
Is it correct?

m a yes/no answer is expected.

Discussion

m to make the system user-friendly, confirmations should stick to
the formulations used by the User:

System: Which day do you want to leave?
User: This Monday.
System: Do you want to leave this Monday?

m both explicit and (semi-)implicit confirmations contain
verbatim reformulation of the User's utterance

= in a sense, they are all explicit

User's Familiarity with the System

m non-skilled users might not be aware of the system'’s limitations

m either its of language competence .. ie what it understands
m or its conceptual (functional) limits ... ie. what can it do

m the user may even confuse one for the other

m it is difficult to recognize such states

= we need to give the user some guidelines/help

m but on the other hand we don’t want to annoy skilled users

Possible Approach: User Modelling

m the user is given an expertise rating, a skill level

m the more skilled user, the less help he gets and the more fluent
the dialogue

m at the beginning, the user is assumed to be slightly experienced

m as the dialogue goes on, the user may either

m “gain skill" if there are no problems
m “lose skill” if there are

User Modelling: Example

m (San-Segundo et al., 2001) use 4 skill levels, level 1 being the
non-experienced and level 4 expert user.

m example:

[the system is in level 3]
System: Say the period of the day you want to travel in.
User: After lunch.

[the system recognizes “in the evening’]
System: Have you said in the evening?
User: No.

[the system decreases the level from 3 to 2]
System: Say the period of the day you want to travel in;
in the morning, in the afternoon or in the evening?
User: In the afternoon.

Possible Approach: Targeted Help
(Hockey et al., 2003)

a fall-back module that tries to help in cases when the main
dialogue system couldn’t understand
two speech recognizers

m the primary is grammar-based

m the secondary uses a statistical language model
Targeted Help gets activated when the primary recognizer
rejects and the secondary gets a hypothesis that cannot be
parsed

handles unparsable input

its output is a help or advice to the user (assumes that the
user lacks the knowledge of the system)

Targeted Help: Error Handling

Types of errors handled:

m endpointing errors

m the user pressed the push-to-talk button too late, something is
missing at the beginning of the utterance
m determined by looking at the grammar — is the first word of
the utterance a valid initial word in the grammar?
m if not, an endpointing error is assumed and reported
m unknown vocabulary
m reports “the system doesn't understand the word X"
m subcategorization mistake
m e.g. “zoom in on a car’ when it is only possible to “zoom in"
and “look at a car” separately
m in fact a conceptual error
m tries to find the closest valid action, compare it with the
proposed one and report it to the user

