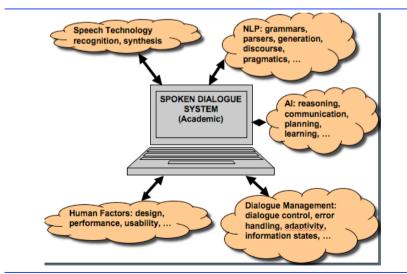
Dialogue Systems

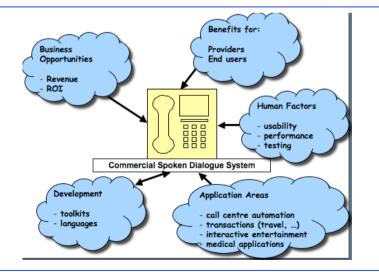
Advanced Dialogue Modeling for Practical Applications: Introduction

Ivana Kruijff-Korbayova

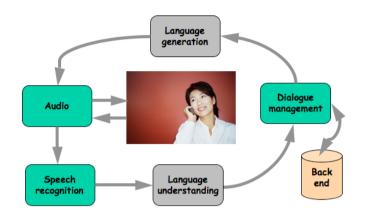

Emerging interdisciplinary area since the early 1990s

- integration of speech technology, natural language processing, AI, dialogue / communication theory, human factors, ...
- scientific / academic based research
- commercially driven R&D
- achievements and challenges

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

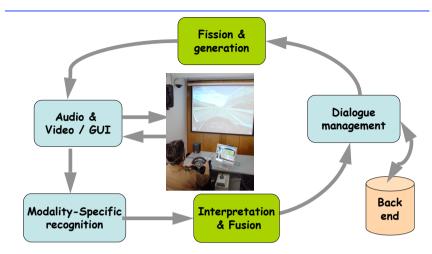

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Dialogues System Research



Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Dialogue System Industry



Typical Pipeline Architecture

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

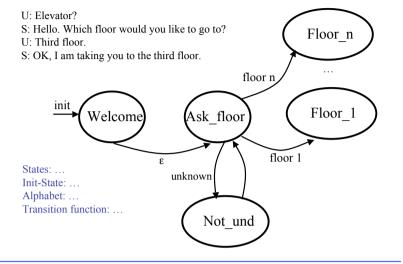
Typical Pipeline Architecture (Multimodal)

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Dialogue Control

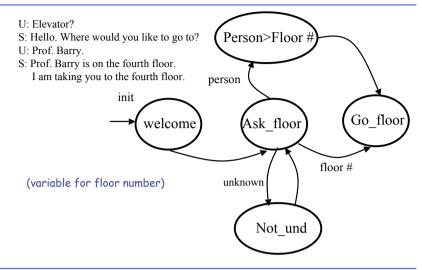
Task complexity

• Finite state systems

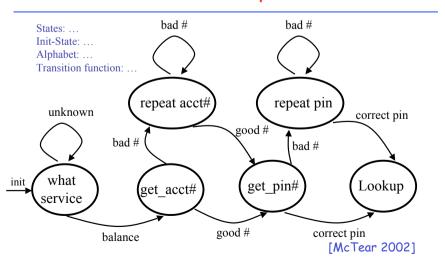

- Sequence of predefined steps (dialogue script)

- Frame-based systems (form-filling)
 - Task represented as a set of slots to fill (frame, template)
- Agent-based systems
 - Joint problem solving by collaborating agents

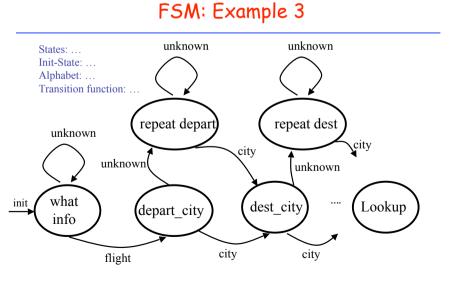
Finite State Systems


- Sequence of predefined steps (dialogue script)
- Set of states and transitions
 - State determines system utterance
 - Carefully designed prompts at each state
 - User utterance determines transition to next state (deterministic)
 Speech recognition tailored to expected responses given the state
- No recursion! (=no nested subdialogues)
- System-driven interaction (system initiative)
- Rigid dialogue flow

FSM: Example 1

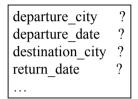


Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications


FSM: Example 1 (extended)

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

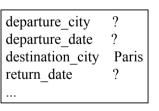
FSM: Example 2



Finite State Systems: Sum Up

- Advantages
 - Fixed prompts can be pre-recorded
 - Speech recognition and input interpretation can be tuned for each state
- Disadvantages
 - Very rigid dialogue flow
 - Inhibiting user initiative
 - In principle can make more flexible, but it quickly gets very complex
 - Only suitable for simple fixed tasks

Frame-Based Models


- Task represented as a set of slots to fill
 - Frame (form): what info should be supplied by user
 - Dialogue states: which slots are filled
- · Strategies for selecting the next system action (given dialogue state)
- Enables mixed initiative ("over-answering")
- Somewhat more flexibility

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Frame-Based Models

S: What can I do for you? U: I want to fly to Paris

S: Where will you fly from? U: From Berlin on August 1st. departure_cityBerlindeparture_date1/8/05destination_cityParisreturn_date?...

Frame-Based Models

- Deciding what to do next
 - Next unfilled slot (similar to FS-based)
 - Slot-combination weighting
 - Ontology-based coherence
- Database lookup
 - Delayed (typically; after certain slots filled)
 - Immediate (can be "expensive", but helpful)

Ontology-based coherence

- S: What is the patient's sex?
 U: Female with severe nipple discharge
 S: What is the patient's age?
 U: Fifty five
 S: Is the discharge bilateral?
 U: No
 S: What is the patient's sex?
 U: Female with severe nipple discharge
 S: Is the discharge bilateral?
 U: No
 S: What is the patient's age?
 - U: Fifty five

[Milward&Beveridge 2003]

Delayed vs. Immediate Lookup

- S: What can I do for you?
- U: I want to fly from Saarbruecken to Luxembourg.
- S: When would you like to fly?
- U: April 1st.
- S: At what time would like to fly?
- U: In the morning.
- S: Sorry. There is no flight from Saarbruecken to Luxembourg on April 1st in the morning.
- S: What can I do for you?
- U: I want to fly from Saarbruecken to Luxembourg.
- S: Sorry. There is no flight from Saarbruecken to Luxembourg.

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

VoiceXML

- VoiceXML is a web-based markup language for representing spoken dialogs
 - Form: basic unit of functionality
 - Field: prompts for and accepts user input
 - Prompt: sequence of audio elements or TTS messages
 - Audio: audio file or TTS message to play
 - Filled: processes input, can pass control to other forms
- Form Interpretation Algorithm
 - Defines how fields in a form are filled in , and how the fill ordering can be modified
- Global event handlers for (e.g., error handling, help)
 - Define behavior when predefined global conditions occur
- VoiceXML application collects and processes info, and plays back info
- VoiceXML assumes a voice browser
 - Info conveyed to user by audio output (synthesized and/or recorded)
 - Info received from user as audio input (voice and/or telephone keypad tones)
 - (analogical to HTML)

Frame-Based DM: Sum Up

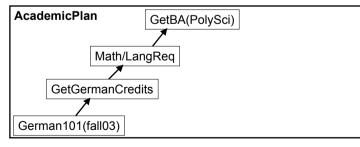
- Advantages
 - Enables some user initiative
 - More flexible
- Disadvantages
 - Speech recognition more difficult, because user input less restricted
 - Not every task can be represented by a frame

Agent-Based DM

- (Collaborative) problem solving by (rational) agents
- Dialogue involves recognition, construction and execution of plans
- Agents have knowledge about solving tasks
 - deciding on goals (objectives): adopt, select, defer, abandon, release
 - forming plans to achieve goals (recipes)
 - executing those plans (acting)
 - revising decisions (re-planning, abandoning goals, etc.)
- · Agents communicate to establish common ground
- · Agents reason about beliefs and actions

Collaboration

- Communication is a joint activity: agents collaborate to establish and achieve their goals
- Neither agent can accomplish the task alone --> mixed initiative
- Need joint goals and mutual understanding
- --> cooperation
- --> grounding


Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

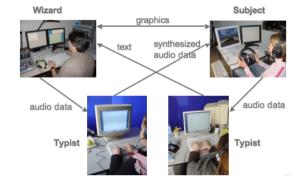
Intention Recognition

Given: plan for getting a BA

U: I'll take German 101 fall semester.

Interleaved Planning&Acting

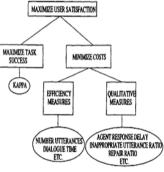
User: Send ambulance one to Parma right away. System: OK. [sends ambulance] System: Where should we take the victim once we pick them I User: Rochester General Hospital. System: OK.


[Blaylock et al. 2003]

Agent-based: Sum Up

- Advantages
 - Enables flexible and adaptive dialogue modeling
 - Any task can be modeled
- Disadvantages
 - Intention recognition is difficult
 - Lots of reasoning (see QUD-based DM for "shortcuts")
 - --> "expensive"

Development Methodologies


- Requirement Specification
 - Analysis of human-human dialogues
 - Wizard-of-Oz experiments (simulations) to gather user behavior samples and test design ideas in early stages of development
 - e.g., the TALK project WOZ experiment setup:

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

Development Methodologies

- Usability Evaluation
 - PARADISE framework
 - [Walker et al. 1997]:
 - Maximize user satisfaction through maximizing task success while minimizing dialogue costs
 User satisfaction (surveys)
 - Objective measures:
 - Delective measures:
 - Task success (in terms of filling a set of slots)
 Dialogue costs:
 - » Efficiency, e.g., no. of turns and time
 » qualitative phenomena, e.g., no. of inappropriate utterances or repairs
 - Performance function: relative contribution of
 - objective factors to user satisfaction

Deployment Platforms

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

- PC
 - GoDIS
 - Circuit-Fix-It Shop, TRIPS/TRAINS
 - Autotutor, Why-Atlas, BE&E, PACO ...
- Telephone
 - Philips Train Timetable System, Deutsche Bahn info, ...
 - It-Spoke weather
- Embedded voice systems
 - HAL (Home Automated Living), D'Homme project
- In-car voice or multimodal systems
 - BMW navigation, TALK project: MP3 player
- PDA, tablet PCs, next generation phones
 MATCH, SmartKom
- Embodied agents and robots
 - REA, SAM, MRE, ...
 - WITAS
 - MEL, BIRON, COSY system, Companions

DEMOS

Key Issues for the Future

- Pervasive systems
 - distributed dialogues: shifts between dialogue situations
 - concurrent dialogues: multitasking (co-ordination, synchronisation, redundancy)
 - interaction model needs to be predominantly event-based (external events, opportunistic)
- Adaptivity:
 - Systems need to be dynamically adaptive in a number of different ways: to the
 environments in which they are used (modality), to their user's preferences and
 needs (personalisation), to changes in task and context, to interaction progress.
- Ability to learn:
 - Systems need to be able to learn from interactions with users in order to provide an optimally usable interface that matches the current environment and user.
- Standardization:
 - There is a need for a common set of standards to support re-usability for developers and to support usability for the users of spoken dialogue systems, e.g. constraining vs. open-ended prompts, explicit vs. implicit verification.

Ivana Kruijff-Korbayová: Advanced Dialogue Modeling for Practical Applications

References

- D. Jurafsky and J. Martin (2000): Speech and Language Processing, Chapter 19.
- McTear (2002): Spoken Dialogue technology. In ACM Surveys. pp. 1-80
- VoiceXML Forum: <u>http://www.voicexml.org/</u>
- Walker, Marilyn A., Litman, Diane J., Kamm, Candace A., Abella, Alicia (2000): PARADISE: A Framework For Evaluating Spoken Dialogue Agents. In Proc. Of the ACL Conference.