Neo-Davidsonian semantics

A systematic exploration of the ways Brutus can do violence to Caesar

Asad Sayeed

COLI, Uni-Saarland

The age-old question: representing sentences.

Representing sentences

Brutus stabs Caesar.

Representing sentences

"Brutus stabs Caesar."

- How to represent this?
- Start with the predicate: stab.
- Standard first-order predicate calculus representation:
- stab(Brutus, Caesar)

Representing sentences

That was easy. Let's make it more complicated.

Representing sentences

Brutus stabs Caesar with a knife.

Representing sentences

"Brutus stabs Caesar with a knife."

- The knife is a participant in the action.
- Perhaps...make it an argument of the predicate?
- Possible representation:
- stab(Brutus, Caesar, knife)

Representing sentences

Brutus stabs Caesar in the agora.

Representing sentences

"Brutus stabs Caesar in the agora."

- The agora is a participant in the action.
- Perhaps...make it a member of the predicate?
- Possible representation:
- stab(Brutus, Caesar, agora)
- ...
- But an agora is not a participant in the same way that a knife is.
- Knife - instrument
- Agora - location
- The predicate arguments are now ambiguous.

Representing sentences

Brutus stabs Caesar with a knife in the agora.

Representing sentences

"Brutus stabs Caesar with a knife in the agora."

- The knife is a participant in the action.
- The agora is a participant in the action.
- Possible representation:
- stab(Brutus, Caesar, agora, knife) ?
- Uh-oh, we require a different arity for all these optional adjuncts.
- Or we need a more flexible way to represent predicates.

Splitting it up

- "Brutus stabs Caesar with a knife in the agora."
- Possible representation:
- stabs(Brutus, Caesar) \& with(knife) \& in(agora)
- Much better now: can have arbitrary adjuncts.

Representing sentences

Brutus stabs Caesar with a knife in the agora and twists it hard.

Representing sentences

- "Brutus stabs Caesar with a knife in the agora and twists it hard."
- Possible representation:
- stabs(Brutus, Caesar) \& with(knife) \& in(agora) \& twists(Brutus, knife) \& hard
- What does the with-predicate apply to?
- What does the 0 -arity hard-predicate apply to?

Davidson's problem

Standard predicate calculus representations

- They do not allow us to refer to predicates.
- But need to refer to predicates to describe complex actions.
- Language is very flexible, predicates can have variable \#s of arguments without necessarily having strongly different meanings. ("Pass (me) the salt.")
- Adverbial modifiers, relative clauses, oh my...

A rough analogy

Consider the noun phrase: some clever driver in America

- Translate this into a possible logical form:
$\exists x \operatorname{driver}(x)$ \& clever(x) \& location(x, America)
- Descriptors of the entity tied together by an existentially-quantified variable x.
Consider the sentence: Bob drives cleverly in America
- Now there is an act of driving, rather than a driver.
- Can we still tie together the descriptors of driving?
- (The analogy doesn't quite work because a "former driver" is not a driver who is former....)

Davidson's solution

Davidson 1989 quoted in Maienborn 2010

Adverbial modification is thus seen to be logically on a par with adjectival modification: what adverbial clauses modify is not verbs but the events that certain verbs introduce.

- A verb predicate like "stab" is actually a description of an event.
- We need to represent this event in the semantics: an event variable.
- We don't know what it is beforehand, so we existentially quantify it.

Davidson's solution

Brutus stabs Caesar with a knife in the agora

$\exists e$ stabs(e, Brutus, Caesar) \& with(e, knife) \& in(e, agora)

Now we have a flexible way to talk about the event of stabbing.

Davidson's solution

Brutus stabs Caesar with a knife in the agora and twists it hard.

$\exists e_{1}$ stabs(e_{1}, Brutus, Caesar) \&

 with(e_{1}, knife) \& in(e_{1}, agora) \& $\exists e_{2}$ twists(e_{2}, Brutus, knife) \& hard(e_{2})Now we have a flexible way to talk about the event of stabbing and twisting hard.

Alternative ways?

They're actually surprisingly hard to find.

- However, consider Discourse Representation Theory (DRT).

From the "Handbook of Philosophical Logic"

Luigi was writing to the Department Chairman. He had applied for the job without much hope.

- Can view multiple sentences as one discourse:

$\begin{gathered} \mathrm{nlct} \mathrm{t}_{1} \mathrm{~s}_{1} \mathrm{j}_{2} \mathrm{e}_{2} \\ \text { Luigi(l) } \\ \text { "the Department Chairman"(c) } \\ \mathrm{t}_{1} \prec \mathrm{n} \\ \mathrm{t}_{1} \subseteq \mathrm{~s}_{1} \\ \left.\mathrm{~s}_{1}: \operatorname{PROG}\left({ }^{\wedge} \mathrm{e} . \mathrm{e}: \text { write-to(l, } \mathrm{c}\right)\right) \\ \text { "the job" }(\mathrm{j}) \\ \mathrm{t}_{2}<\mathrm{t}_{1} \\ \mathrm{e}_{2} \subseteq \mathrm{t}_{2} \\ \mathrm{e}_{2} \text { apply-for(1,j) } \\ \text { "whout-much-hope"(} \left.\mathrm{e}_{2}\right) \end{gathered}$

- Events even show up here!

Something that is Neo.

Q: But what makes it NEO-Davidsonian?

A: It got an update by Parsons (1990). But this requires a bit of background in semantics.

Thematic roles

Active voice

Brutus stabbed Caesar.
Brutus is the subject of the sentence.
Caesar is the object of the sentence.

Thematic roles

Passive voice

Caesar was stabbed (by Brutus).
Caesar is the subject of the sentence.
Brutus is the object of the optional preposition by.

Thematic roles

Active voice

Brutus stabbed Caesar.
Brutus is the one doing the stabbing.
Caesar is the one getting stabbed.

Thematic roles

Passive voice

Caesar was stabbed (by Brutus).
Brutus is the one doing the stabbing. Caesar is the one getting stabbed.

Thematic roles

Passive voice

Caesar was stabbed (by Brutus).
Brutus is the one doing the stabbing.
Caesar is the one getting stabbed.
Grammatical roles have switched, but semantic roles have not!

Thematic roles

- There is a clear separation between syntactic arguments and semantic arguments.
- Semantic arguments \Rightarrow thematic roles aka θ-roles.
- A POSSIBLE inventory of roles from Parsons (1995). Given an event e and an entity x :
- e is by x - Agent
- x experiences e-Experiencer
- e is of x - Theme
- e is from x - Source
- The specific inventory is quite controversial but Agent and Theme are minimal members of the set.

Thematic roles

Caesar was stabbed by Brutus.

- Caesar is the Theme (or "Patient").
- Brutus is the Agent.

Thematic roles

Caesar was stabbed by Brutus.

A Davidsonian representation:

- $\exists e \operatorname{stab}(e$, Brutus, Caesar)

Thematic roles

Caesar was stabbed (by Brutus).

But there's no way to represent the fact that the theme is optional, without an ambiguous lexical entry.

Thematic roles

Caesar was stabbed (by Brutus).

Solution: break predicate arguments into thematic roles.

- $\exists e$ stab(e) (\& Agent(e, Brutus)) \& Patient(e, Caesar)
- The stab-predicate now only has the event argument.
- Optionality of agent in the passive is fully accomodated.

Problems?

"Arcane" semantic issues mentioned by Parsons (1995).

- "I sold you a car for $\$ 5$." - what is the Theme here, "a car" or 5 ?
- The $\$ 5$ is changing hands here, so it is affected by the event.
- Ambiguous prepositions: "I sold a car for Mary for \$5."
- Two uses of "for" - not exactly a semantic problem for us, but Parsons thought it was.
- "Mary fed her baby" - why is "baby" not an agent? It is feeding!
- (Consider "riechen" in German. "Es riecht" (it smells) vs "Ich rieche es" (l'm smelling it).
What about non-eventive assertions?
- "Mary is sick."
- Need a state variable rather than an event variable.
- $\exists s$ being-sick(s) \& $\ln (s$, Mary)
- Read: "Mary is in a state of being sick."

Other issues

- "Caesar was stabbed."
- But what if you really wanted to include the agent?
- No problem, quantify: $\exists x \exists e \operatorname{stab}(e) \& \operatorname{Agent}(e, x)$ \& Theme $(e$, Caesar)
- Entirely optional to do it this way. (Why would you?)
- "Destruction" vs. "destroy" - do nouns have events?
- "the destruction of the city by God"
- Argument/adjunct distinctions. (We'll get to this.)

Q: But this is a seminar on incremental syntax/semantics. What does neo-Davidsonian semantics have to do with that?

I CARE ABOUT THIS ALOT

From Allie Brosh's famous blog.

A: A lot.

I CARE ABOUT THIS ALOT

From Allie Brosh's famous blog.

A: A lot.

- Broken down the representation into atomic components of fixed arity.
- Provided way to connect them via the event variable.

Et tu, Brute? Et tu, Brute? Et tu, Brute?

An incremental parse:

Brutus often stabs Caesar.

Et tu, Brute? Et tu, Brute? Et tu, Brute?

An incremental parse:

Brutus || often stabs Caesar. $\exists e$ Agent(e, Brutus)

Et tu, Brute? Et tu, Brute? Et tu, Brute?

An incremental parse:

Brutus often || stabs Caesar.

 $\exists e$ Agent(e, Brutus) \& often(e)
Et tu, Brute? Et tu, Brute? Et tu, Brute?

An incremental parse:

Brutus often stabs || Caesar.

$\exists e$ Agent(e, Brutus) \& often(e) \& stabs(e)

Et tu, Brute? Et tu, Brute? Et tu, Brute?

An incremental parse:

Brutus often stabs Caesar. ||

$\exists e$ Agent(e, Brutus) \& often(e) \& stabs(e) \& Theme(e, Caesar)

Incremental parsing

- Previous example: big assumption that the syntactic parser will cooperate.
- The challenge: designing the syntax and the lexicon to work with the semantics.
- But: Neo-Davidsonian approach at least simplifies predicate representation.
- Low recursion: inference rules not required to go back and edit deeply embedded arguments.
- To tie it back to last class: Aist et al.

Incremental parsing

```
Aist et al. 2006
MOVE a: move \((X, Y)\)
LARGE TRIANGLE to: move(triangle1, \(Y\) )
CENTRAL PARK: move(triangle1, centralpark1)
```

- Aist et al. are filling in free variables as the parse proceeds.
- How to make this flexible enough to handle more of language?

Argument/adjunct representation issues

"Brutus stabbed Caesar violently yesterday."

- Possible neo-Davidsonian representation:
- $\exists e \operatorname{stab}(e)$ \& Agent(e, Brutus) \& Theme(e, Caesar) \& violently(e) \& yesterday (e)
- Get rid of the last two
- $\exists e$ stab(e) \& Agent(e, Brutus) \& Theme(e, Caesar)
- Still corresponds to grammatical sentence (ignoring tense): "Brutus stabbed Caesar".
- Doesn't change truth condition, they're adjuncts.

But getting rid of Brutus or Caesar definitely does. They're arguments.

Argument/adjunct representation issues

Implications for the design of the parsing algorithm

- Argument-event relation mediated through thematic role.
- Verb adjuncts: direct relation.
- Syntax already usually aware of optional adjuncts-need principled way to translate to semantics.
Hunter (2009)
- Encode the relationship directly into the minimalist grammar (MG similar in spirit to CCG).
- Define an adjunction operation in the grammar that establishes a direct connection to the event.
Next week, we will describe a way to do this for TAG.

Minimal recursion semantics (MRS)

Practical Davidsonian representation (Copestake, 2005 etc).

- "Elementary predications" (EPs) - Davidsonian conjuncts.
- Hooks and slots (roles and fillers) are used for semantic composition through equations (more complicated than this, of course).
- Can be attached to various grammar formalisms
- Underspecification! (we'll deal with this next week too)
the fat cat sat on a mat
MRS representation:
$l 0$: the_q $(x 0, h 01, h 02), l 1: _$fat_j $(x 1), l 2: _$cat_n $(x 2), l 3: _$sit_v_1 $(e 3, x 3), l 4$: _on_p $(e 4, e 41, x 4)$,
l5: _a_q $(x 5, h 51, h 52)$, l6: _mat_n_1 ($x 6$),
$h 01={ }_{q} l 1, h 51={ }_{q} l 6$
$x 0=x 1=x 2=x 3, e 3=e 41, x 4=x 5=x 6, l 1=l 2, l 3=l 4$

Minimal recursion semantics (MRS)

To achieve further underspecification, can be Neo-Davidsonianized (RMRS):

```
RMRS equivalent to the MRS above:
    l0:a0: _the_q(x0), l0: a0: RSTR(h01), l0: a0: BODY(h02), l1: a1: _fat_j (x1), l2: a2:_cat_n (x2),
    l3: a3: _sit_v_1(e3), l3: a3: ARG1(x31), l4: a4: _on_p (e4, e41, x4), l4:a4: ARG1(e41), l4:a4: ARG2(x4),
    l5: a5: _a_q(x5), l5: a5: RSTR (h51), l5: a5: BODY (h52), l6:a6: _mat_n_1(x6),
    h01 =
    x0=x1=x2=x3,e3=e41, x4=x5=x6,l1=l2,l3=l4
Highly underspecified RMRS output:
    l0:a0: _the_q(x0), l1: a1: _fat_j(x1), l2: a2: _cat_n (x2), l3: a3: _sit_v (e3), l4: a4: _on_p (e4),
    l5:a5: _a_q(x5), l6:a6:_mat_n(x6)
```

Copestake (2007): use POS tags rather than a lexicon, and get what relations we can from the grammar.

Minimal recursion semantics (MRS)

- RMRS-style representations are used in a lot of projects these days.
- Standard composition algorithm not incremental.
- Incremental versions by Schlangen et al. (may discuss in a later week)
- We can try it ourselves using the DELPH-IN project web site-implemented with the "English Resource Grammar".

Lots of open questions!

Just for example:

- What do about raising constructions? "I want (Brutus) to stab Caesar."
- Modals? "Brutus may have stabbed Caesar in the agora." - possible world semantics!!!
- Relative clauses: "The man who Caesar offended stabbed him."
- And, of course, an actual incremental semantic construction algorithm...

Lets try some of our own

- Brutus often stabs Caesar in the chest in the agora.
- Some person often stabs Caesar.
- Every senator who stabbed Caesar is angry.
- Mark Antony saw that every senator stabbed Caesar.
- Brutus wants to stab Caesar.

