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Bisher: Vektormodelle
• Weit verbreiteter Einsatz im Gebiet des Natural 

Language Processing
• Beliebtheit

• Keine Überwachung notwendig
• Einfache Berechnung

• Bedeutungen eines Wortes sind Punkte im Raum
• Jede Komponente gehört zu einem gleichzeitig 

auftretenden kontextabhängigen Element
• Ähnlichkeit der Wortbedeutungen durch Kosinuswinkel
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Bisher: Vektormodelle

• Erkennen nicht explizit die verschiedenen Bedeutungen 
von Wörtern 

• Stellen dementsprechend ihre Bedeutung unabhängig 
vom gleichzeitig auftretendem Kontext dar

• Daher: Benutzt zur Repräsentation isolierter Wörter

• Bedeutungsähnlichkeit außerhalb des Kontextes
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Bisher: Vektormodelle
• Entwicklung spezieller Modelle, die Wortbedeutungen 

im Kontext repräsentieren
• Mitchell & Lapata, 2008 ; Erk & Padó, 2008 ; 

Thater et al., 2009 
• Problem wird nur indirekt adressiert
• Extrahieren die typischen Kookkurrenzvektoren:   

Vermischung von Bedeutungen!!
• Benutzung von Vektoroperationen, um entweder 

kontextualisierte Repräsentationen des Zielwortes/
Repräsentation für eine Reihe von Wörtern zu 
bekommen
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Bisher: Vektormodelle

5

Vektorraummodelle
! Kleine Wiederholung

• Erstellung eines Vektors für ein Wort durch Kookkurrenzinformationen 
aus Korpus (meist 10-Wort-Fenster oder Satzkontext)

• Vektor wurde generiert aus allen Auftreten des Wortes aus Korpus

• Keine Bedeutungsunterscheidung

2
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Vektorraummodelle
! Kleine Wiederholung

• Erstellung eines Vektors für ein Wort durch Kookkurrenzinformationen 
aus Korpus (meist 10-Wort-Fenster oder Satzkontext)

• Vektor wurde generiert aus allen Auftreten des Wortes aus Korpus

• Keine Bedeutungsunterscheidung

2
Sonntag, 11. Dezember 2011

Hahn (Tier)

Hahn

Hahn (Endstück einer 
Wasserleitung)

• Mitchell und Lapata (08)
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Bisher: Vektormodelle
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Vektorraummodelle
! Kleine Wiederholung

• Erstellung eines Vektors für ein Wort durch Kookkurrenzinformationen 
aus Korpus (meist 10-Wort-Fenster oder Satzkontext)

• Vektor wurde generiert aus allen Auftreten des Wortes aus Korpus

• Keine Bedeutungsunterscheidung

2
Sonntag, 11. Dezember 2011

Hahn (Tier)

Hahn

Hahn (Endstück einer 
Wasserleitung)

• Erk und Padó (08)

Reparatur, 
Bauernhof, krähen, 

Bad
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Bisher: Vektormodelle
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Vektorraummodelle
! Kleine Wiederholung

• Erstellung eines Vektors für ein Wort durch Kookkurrenzinformationen 
aus Korpus (meist 10-Wort-Fenster oder Satzkontext)

• Vektor wurde generiert aus allen Auftreten des Wortes aus Korpus

• Keine Bedeutungsunterscheidung

2
Sonntag, 11. Dezember 2011

Hahn (Tier)

Hahn

Hahn (Endstück einer 
Wasserleitung)

• Thater et al. (2011)

Bad, Wasser, 
aufdrehen

krähen, 
Stall, 

Henne
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Bisher: Vektormodelle
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Hahn

• Reisinger und Mooney 
(2010)
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Bisher: Vektormodelle
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Hahn

• Reisinger und Mooney 
(2010)
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Neues Modell

• Wahrscheinlichkeitssystem für die Repräsentation von 
Wortbedeutung und das Messen von Ähnlichkeit im 
Kontext

• Bedeutung isolierter Wörter: 
Wahrscheinlichkeitsverteilung über eine Reihe von 
verborgenen Bedeutungen

10

Our model assumes the same type of input data,
namely a co-occurrence matrix, where rows corre-
spond to target words and columns to context fea-
tures (e.g., co-occurring neighbors). Throughout
this paper we will use the notation ti with i : 1..I
to refer to a target word and cj with j : 1..J to refer
to context features. A cell (i, j) in the matrix rep-
resents the frequency of occurrence of target ti with
context feature cj over a corpus.

Meaning Representation over Latent Senses
We further assume that the target words ti i : 1...I
found in a corpus share a global set of meanings
or senses Z = {zk|k : 1...K}. And therefore the
meaning of individual target words can be described
as a distribution over this set of senses. More for-
mally, a target ti is represented by the following vec-
tor:

v(ti) = (P(z1|ti), ...,P(zK|ti)) (1)

where component P (z1|ti) is the probability of
sense z1 given target word ti, component P (z2|ti)
the probability of sense z2 given ti and so on.

The intuition behind such a representation is that
a target word can be described by a set of core mean-
ings and by the frequency with which these are at-
tested. Note that the representation in (1) is not
fixed but parametrized with respect to an input cor-
pus (i.e., it only reflects word usage as attested in
that corpus). The senses z1 . . . zK are latent and can
be seen as a means of reducing the dimensionality
of the original co-occurrence matrix.

Analogously, we can represent the meaning of a
target word given a context feature as:

v(ti, cj) = (P(z1|ti, cj), ...,P(zK|ti, cj)) (2)

Here, target ti is again represented as a distribution
over senses, but is now modulated by a specific con-
text cj which reflects actual word usage. This distri-
bution is more “focused” compared to (1); the con-
text helps disambiguate the meaning of the target
word, and as a result fewer senses will share most
of the probability mass.

In order to create the context-aware representa-
tions defined in (2) we must estimate the proba-
bilities P (zk|ti, cj) which can be factorized as the
product of P (ti, zk), the joint probability of target ti
and latent sense zk, and P (cj |zk, ti), the conditional
probability of context cj given target ti and sense zk:

P (zk|ti, cj) =
P (ti, zk)P (cj |zk, ti)�
k P (ti, zk)P (cj |zk, ti)

(3)

Problematically, the term P (cj |zk, ti) is difficult to
estimate since it implies learning a total number of
K × I J-dimensional distributions. We will there-
fore make the simplifying assumption that target
words ti and context features cj are conditionally in-
dependent given sense zk:

P (zk|ti, cj) ≈
P (zk|ti)P (cj |zk)�
k P (zk|ti)P (cj |zk)

(4)

Although not true in general, the assumption is rela-
tively weak. We do not assume that words and con-
text features occur independently of each other, but
only that they are generated independently given an
assigned meaning. A variety of latent variable mod-
els can be used to obtain senses z1 . . . zK and es-
timate the distributions P (zk|ti) and P (cj |zk); we
give specific examples in Section 4.

Note that we abuse terminology here, as the
senses our models obtain are not lexicographic
meaning distinctions. Rather, they denote coarse-
grained senses or more generally topics attested in
the document collections our model is trained on.
Furthermore, the senses are not word-specific but
global (i.e., shared across all words) and modulated
either within or out of context probabilistically via
estimating P (zk|ti, cj) and P (zk|ti), respectively.

4 Parametrizations

The general framework outlined above can be
parametrized with respect to the input co-occurrence
matrix and the algorithm employed for inducing the
latent structure. Considerable latitude is available
when creating the co-occurrence matrix, especially
when defining its columns, i.e., the linguistic con-
texts a target word is attested with. These con-
texts can be a small number of words surrounding
the target word (Lund and Burgess, 1996; Lowe
and McDonald, 2000), entire paragraphs, documents
(Salton et al., 1975; Landauer and Dumais, 1997)
or even syntactic dependencies (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007).
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Neues Modell

• Verteilung gibt die Wahrscheinlichkeit jeder 
Bedeutung außerhalb des Kontextes wieder

• Bedeutungsambiguität wird direkt beim 
Konstruktionsprozess des Vektor berücksichtigt

• Kontextualisierte Bedeutung wird auf natürliche 
Weise als Veränderung in der originalen 
Bedeutungsverteilung modelliert

11
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Bedeutungsdarstellung im Kontext 

12

• Modell nimmt gleiche Art von Input Data an wie 
Vektormodelle

--> Kookkurrenzmatrix
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Bedeutungsdarstellung im Kontext 
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Kontextmerkmale: Nachbarwörter cKontextmerkmale: Nachbarwörter cKontextmerkmale: Nachbarwörter cKontextmerkmale: Nachbarwörter cjKontextmerkmale: Nachbarwörter cj

c1: c2: c3: c4: c5: c6:
Wasser Stall Henne putzen aufdrehen krähen

Ziel-
wörter

t1: 
Hahn

12 7 5 5 8 8
wörter

tj ...

Hahn: Tier/Wasserhahn

• Modell nimmt gleiche Art von Input Data an wie 
Vektormodelle

--> Kookkurrenzmatrix
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Bedeutungsdarstellung im Kontext 
• Zielwörter eines Korpus teilen ein globales Set an 

Bedeutungen 
   Z = {zk|k : 1 ... K}

• Bedeutung der individuellen Zielwörter kann als 
Verteilung über dieses Set von Bedeutungen 
beschrieben werden

• Ziel ti wird durch folgenden Bedeutungsvektor 
dargestellt:

13
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v(Hahn)=(P(Wasserhahn|Hahn), P(Vogel|Hahn))
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Bedeutungsdarstellung im Kontext 
• Ein Zielwort wird durch eine Reihe von 

Kernbedeutungen und der Häufigkeit, mit der diese 
bestätigt werden, beschrieben

• Die Bedeutungen z1 ... zk sind latente Variablen 
(verborgen) 

• Mittel zur Reduzierung der Dimensionalität der 
ursprünglichen Kookkurrenzmatrix

• Bedeutungen sind nicht wortspezifisch, sondern global 
und werden entweder im oder außerhalb des Kontextes 
probabilistisch angepasst

14

Sonntag, 22. Januar 2012



Bedeutungsdarstellung im Kontext 
• Bedeutung eines Zielwortes, wenn ein Kontextmerkmal 

gegeben ist:

• Ziel ti ist nun auf einen spezifischen Kontext cj abgestimmt, 
der tatsächliche Wortbenutzung widerspiegelt

• Verteilung ist fokussierter

• Kontext hilft die Bedeutung des Zielwortes zu 
disambiguieren

• Weniger Bedeutungen teilen das Meiste der 
Wahrscheinlichkeitsmasse

15

Our model assumes the same type of input data,
namely a co-occurrence matrix, where rows corre-
spond to target words and columns to context fea-
tures (e.g., co-occurring neighbors). Throughout
this paper we will use the notation ti with i : 1..I
to refer to a target word and cj with j : 1..J to refer
to context features. A cell (i, j) in the matrix rep-
resents the frequency of occurrence of target ti with
context feature cj over a corpus.

Meaning Representation over Latent Senses
We further assume that the target words ti i : 1...I
found in a corpus share a global set of meanings
or senses Z = {zk|k : 1...K}. And therefore the
meaning of individual target words can be described
as a distribution over this set of senses. More for-
mally, a target ti is represented by the following vec-
tor:

v(ti) = (P(z1|ti), ...,P(zK|ti)) (1)

where component P (z1|ti) is the probability of
sense z1 given target word ti, component P (z2|ti)
the probability of sense z2 given ti and so on.

The intuition behind such a representation is that
a target word can be described by a set of core mean-
ings and by the frequency with which these are at-
tested. Note that the representation in (1) is not
fixed but parametrized with respect to an input cor-
pus (i.e., it only reflects word usage as attested in
that corpus). The senses z1 . . . zK are latent and can
be seen as a means of reducing the dimensionality
of the original co-occurrence matrix.

Analogously, we can represent the meaning of a
target word given a context feature as:

v(ti, cj) = (P(z1|ti, cj), ...,P(zK|ti, cj)) (2)

Here, target ti is again represented as a distribution
over senses, but is now modulated by a specific con-
text cj which reflects actual word usage. This distri-
bution is more “focused” compared to (1); the con-
text helps disambiguate the meaning of the target
word, and as a result fewer senses will share most
of the probability mass.

In order to create the context-aware representa-
tions defined in (2) we must estimate the proba-
bilities P (zk|ti, cj) which can be factorized as the
product of P (ti, zk), the joint probability of target ti
and latent sense zk, and P (cj |zk, ti), the conditional
probability of context cj given target ti and sense zk:

P (zk|ti, cj) =
P (ti, zk)P (cj |zk, ti)�
k P (ti, zk)P (cj |zk, ti)

(3)

Problematically, the term P (cj |zk, ti) is difficult to
estimate since it implies learning a total number of
K × I J-dimensional distributions. We will there-
fore make the simplifying assumption that target
words ti and context features cj are conditionally in-
dependent given sense zk:

P (zk|ti, cj) ≈
P (zk|ti)P (cj |zk)�
k P (zk|ti)P (cj |zk)

(4)

Although not true in general, the assumption is rela-
tively weak. We do not assume that words and con-
text features occur independently of each other, but
only that they are generated independently given an
assigned meaning. A variety of latent variable mod-
els can be used to obtain senses z1 . . . zK and es-
timate the distributions P (zk|ti) and P (cj |zk); we
give specific examples in Section 4.

Note that we abuse terminology here, as the
senses our models obtain are not lexicographic
meaning distinctions. Rather, they denote coarse-
grained senses or more generally topics attested in
the document collections our model is trained on.
Furthermore, the senses are not word-specific but
global (i.e., shared across all words) and modulated
either within or out of context probabilistically via
estimating P (zk|ti, cj) and P (zk|ti), respectively.

4 Parametrizations

The general framework outlined above can be
parametrized with respect to the input co-occurrence
matrix and the algorithm employed for inducing the
latent structure. Considerable latitude is available
when creating the co-occurrence matrix, especially
when defining its columns, i.e., the linguistic con-
texts a target word is attested with. These con-
texts can be a small number of words surrounding
the target word (Lund and Burgess, 1996; Lowe
and McDonald, 2000), entire paragraphs, documents
(Salton et al., 1975; Landauer and Dumais, 1997)
or even syntactic dependencies (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007).
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Bedeutungsdarstellung im Kontext 
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only that they are generated independently given an
assigned meaning. A variety of latent variable mod-
els can be used to obtain senses z1 . . . zK and es-
timate the distributions P (zk|ti) and P (cj |zk); we
give specific examples in Section 4.

Note that we abuse terminology here, as the
senses our models obtain are not lexicographic
meaning distinctions. Rather, they denote coarse-
grained senses or more generally topics attested in
the document collections our model is trained on.
Furthermore, the senses are not word-specific but
global (i.e., shared across all words) and modulated
either within or out of context probabilistically via
estimating P (zk|ti, cj) and P (zk|ti), respectively.

4 Parametrizations

The general framework outlined above can be
parametrized with respect to the input co-occurrence
matrix and the algorithm employed for inducing the
latent structure. Considerable latitude is available
when creating the co-occurrence matrix, especially
when defining its columns, i.e., the linguistic con-
texts a target word is attested with. These con-
texts can be a small number of words surrounding
the target word (Lund and Burgess, 1996; Lowe
and McDonald, 2000), entire paragraphs, documents
(Salton et al., 1975; Landauer and Dumais, 1997)
or even syntactic dependencies (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007).
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v(Hahn) = (P(Wasserhahn|Hahn), P(Vogel|Hahn))

v(Hahn, Wasser) = (P(Wasserhahn|Hahn, Wasser), P(Vogel|Hahn, Wasser))

v(Hahn) = (0,1  ,  0,9)

v(Hahn, Stall) = (P(Wasserhahn|Hahn, Stall), P(Vogel|Hahn, Stall))
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Our model assumes the same type of input data,
namely a co-occurrence matrix, where rows corre-
spond to target words and columns to context fea-
tures (e.g., co-occurring neighbors). Throughout
this paper we will use the notation ti with i : 1..I
to refer to a target word and cj with j : 1..J to refer
to context features. A cell (i, j) in the matrix rep-
resents the frequency of occurrence of target ti with
context feature cj over a corpus.

Meaning Representation over Latent Senses
We further assume that the target words ti i : 1...I
found in a corpus share a global set of meanings
or senses Z = {zk|k : 1...K}. And therefore the
meaning of individual target words can be described
as a distribution over this set of senses. More for-
mally, a target ti is represented by the following vec-
tor:

v(ti) = (P(z1|ti), ...,P(zK|ti)) (1)

where component P (z1|ti) is the probability of
sense z1 given target word ti, component P (z2|ti)
the probability of sense z2 given ti and so on.

The intuition behind such a representation is that
a target word can be described by a set of core mean-
ings and by the frequency with which these are at-
tested. Note that the representation in (1) is not
fixed but parametrized with respect to an input cor-
pus (i.e., it only reflects word usage as attested in
that corpus). The senses z1 . . . zK are latent and can
be seen as a means of reducing the dimensionality
of the original co-occurrence matrix.

Analogously, we can represent the meaning of a
target word given a context feature as:

v(ti, cj) = (P(z1|ti, cj), ...,P(zK|ti, cj)) (2)

Here, target ti is again represented as a distribution
over senses, but is now modulated by a specific con-
text cj which reflects actual word usage. This distri-
bution is more “focused” compared to (1); the con-
text helps disambiguate the meaning of the target
word, and as a result fewer senses will share most
of the probability mass.

In order to create the context-aware representa-
tions defined in (2) we must estimate the proba-
bilities P (zk|ti, cj) which can be factorized as the
product of P (ti, zk), the joint probability of target ti
and latent sense zk, and P (cj |zk, ti), the conditional
probability of context cj given target ti and sense zk:

P (zk|ti, cj) =
P (ti, zk)P (cj |zk, ti)�
k P (ti, zk)P (cj |zk, ti)

(3)

Problematically, the term P (cj |zk, ti) is difficult to
estimate since it implies learning a total number of
K × I J-dimensional distributions. We will there-
fore make the simplifying assumption that target
words ti and context features cj are conditionally in-
dependent given sense zk:

P (zk|ti, cj) ≈
P (zk|ti)P (cj |zk)�
k P (zk|ti)P (cj |zk)

(4)

Although not true in general, the assumption is rela-
tively weak. We do not assume that words and con-
text features occur independently of each other, but
only that they are generated independently given an
assigned meaning. A variety of latent variable mod-
els can be used to obtain senses z1 . . . zK and es-
timate the distributions P (zk|ti) and P (cj |zk); we
give specific examples in Section 4.

Note that we abuse terminology here, as the
senses our models obtain are not lexicographic
meaning distinctions. Rather, they denote coarse-
grained senses or more generally topics attested in
the document collections our model is trained on.
Furthermore, the senses are not word-specific but
global (i.e., shared across all words) and modulated
either within or out of context probabilistically via
estimating P (zk|ti, cj) and P (zk|ti), respectively.

4 Parametrizations

The general framework outlined above can be
parametrized with respect to the input co-occurrence
matrix and the algorithm employed for inducing the
latent structure. Considerable latitude is available
when creating the co-occurrence matrix, especially
when defining its columns, i.e., the linguistic con-
texts a target word is attested with. These con-
texts can be a small number of words surrounding
the target word (Lund and Burgess, 1996; Lowe
and McDonald, 2000), entire paragraphs, documents
(Salton et al., 1975; Landauer and Dumais, 1997)
or even syntactic dependencies (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007).
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vereinfachernde 
Annahme, dass ti und cj 
bedingt wahrscheinlich 
sind, wenn zk gegeben 

ist
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Our model assumes the same type of input data,
namely a co-occurrence matrix, where rows corre-
spond to target words and columns to context fea-
tures (e.g., co-occurring neighbors). Throughout
this paper we will use the notation ti with i : 1..I
to refer to a target word and cj with j : 1..J to refer
to context features. A cell (i, j) in the matrix rep-
resents the frequency of occurrence of target ti with
context feature cj over a corpus.

Meaning Representation over Latent Senses
We further assume that the target words ti i : 1...I
found in a corpus share a global set of meanings
or senses Z = {zk|k : 1...K}. And therefore the
meaning of individual target words can be described
as a distribution over this set of senses. More for-
mally, a target ti is represented by the following vec-
tor:

v(ti) = (P(z1|ti), ...,P(zK|ti)) (1)

where component P (z1|ti) is the probability of
sense z1 given target word ti, component P (z2|ti)
the probability of sense z2 given ti and so on.

The intuition behind such a representation is that
a target word can be described by a set of core mean-
ings and by the frequency with which these are at-
tested. Note that the representation in (1) is not
fixed but parametrized with respect to an input cor-
pus (i.e., it only reflects word usage as attested in
that corpus). The senses z1 . . . zK are latent and can
be seen as a means of reducing the dimensionality
of the original co-occurrence matrix.

Analogously, we can represent the meaning of a
target word given a context feature as:

v(ti, cj) = (P(z1|ti, cj), ...,P(zK|ti, cj)) (2)

Here, target ti is again represented as a distribution
over senses, but is now modulated by a specific con-
text cj which reflects actual word usage. This distri-
bution is more “focused” compared to (1); the con-
text helps disambiguate the meaning of the target
word, and as a result fewer senses will share most
of the probability mass.

In order to create the context-aware representa-
tions defined in (2) we must estimate the proba-
bilities P (zk|ti, cj) which can be factorized as the
product of P (ti, zk), the joint probability of target ti
and latent sense zk, and P (cj |zk, ti), the conditional
probability of context cj given target ti and sense zk:

P (zk|ti, cj) =
P (ti, zk)P (cj |zk, ti)�
k P (ti, zk)P (cj |zk, ti)

(3)

Problematically, the term P (cj |zk, ti) is difficult to
estimate since it implies learning a total number of
K × I J-dimensional distributions. We will there-
fore make the simplifying assumption that target
words ti and context features cj are conditionally in-
dependent given sense zk:

P (zk|ti, cj) ≈
P (zk|ti)P (cj |zk)�
k P (zk|ti)P (cj |zk)

(4)

Although not true in general, the assumption is rela-
tively weak. We do not assume that words and con-
text features occur independently of each other, but
only that they are generated independently given an
assigned meaning. A variety of latent variable mod-
els can be used to obtain senses z1 . . . zK and es-
timate the distributions P (zk|ti) and P (cj |zk); we
give specific examples in Section 4.

Note that we abuse terminology here, as the
senses our models obtain are not lexicographic
meaning distinctions. Rather, they denote coarse-
grained senses or more generally topics attested in
the document collections our model is trained on.
Furthermore, the senses are not word-specific but
global (i.e., shared across all words) and modulated
either within or out of context probabilistically via
estimating P (zk|ti, cj) and P (zk|ti), respectively.

4 Parametrizations

The general framework outlined above can be
parametrized with respect to the input co-occurrence
matrix and the algorithm employed for inducing the
latent structure. Considerable latitude is available
when creating the co-occurrence matrix, especially
when defining its columns, i.e., the linguistic con-
texts a target word is attested with. These con-
texts can be a small number of words surrounding
the target word (Lund and Burgess, 1996; Lowe
and McDonald, 2000), entire paragraphs, documents
(Salton et al., 1975; Landauer and Dumais, 1997)
or even syntactic dependencies (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007).
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P(Wasserhahn|Hahn) P(Wasser|Wasserhahn)
= P(Wasserhahn|Hahn) P(Wasser|Wasserhahn) + P(Vogel|Hahn) P(Wasser|Vogel)

P(Vogel|Hahn) P(Wasser|Vogel)
, P(Wasserhahn|Hahn) P(Wasser|Wasserhahn) + P(Vogel|Hahn) P(Wasser|Vogel)

v(Hahn, Wasser) 

(
)
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Parametrisierung
• Diese generelle Grundstruktur kann auf die Input 

Kookkurrenz Matrix und dem Algorithmus, der zum 
Erzeugen der Latenten Struktur benutzt wird, angepasst 
werden

• Großer Spielraum beim Erzeugen der Kookkurrenz-
Matrix

• Mögliche Spalten (dh. Kontextmerkmale):
• Nachbarwörter um das Zielwort
• Ganze Paragraphen, Dokumente
• Syntaktische Abhängigkeiten
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Parametrisierung

• Es können auch eine Anzahl von 
Wahrscheinlichkeitsmodellen benutzt werden, 
um die verborgenen Bedeutungen 
hervorzurufen

• Non-negative Matrix Factorization

• Latent Dirichlet Allocation

20
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Non-negative Matrix Factorization

• Input Matrix V wird in zwei nicht negative 
Matrizen W und H zerlegt

21

Analogously, a number of probabilistic models

can be employed to induce the latent senses. Ex-

amples include Probabilistic Latent Semantic Anal-

ysis (PLSA, Hofmann (2001)), Probabilistic Prin-

cipal Components Analysis (Tipping and Bishop,

1999), non-negative matrix factorization (NMF, Lee

and Seung (2000)), and latent Dirichlet allocation

(LDA, Blei et al. (2003)). We give a more detailed

description of the latter two models as we employ

them in our experiments.

Non-negative Matrix Factorization Non-

negative matrix factorization algorithms approx-

imate a non-negative input matrix V by two

non-negative factors W and H , under a given

loss function. W and H are reduced-dimensional

matrices and their product can be regarded as a

compressed form of the data in V :

VI,J ≈WI,KHK,J (5)

where W is a basis vector matrix and H is an en-

coded matrix of the basis vectors in equation (5).

Several loss functions are possible, such as mean

squared error and Kullback-Leibler (KL) diver-

gence. In keeping with the formulation in Sec-

tion 3 we opt for a probabilistic interpretation of

NMF (Gaussier and Goutte, 2005; Ding et al., 2008)

and thus minimize the KL divergence between WH

and V .

min
�

i,j

(Vi,j log
Vi,j

WHi,j
− Vi,j + WHi,j) (6)

Specifically, we interpret matrix V as

Vij = P (ti, cj), and matrices W and H as P (ti, zk)
and P (cj |zk), respectively. We can also ob-

tain the following more detailed factorization:

P (ti, cj) =
�

k P (ti)P (zk|ti)P (cj |zk).
Le WH denote the factors in a NMF decom-

position of an input matrix V and B be a diag-

onal matrix with Bkk =
�

j Hkj . B
−1

H gives a

row-normalized version of H . Similarly, given

matrix WB, we can define a diagonal matrix A,

with Aii =
�

k(WB)ik. A
−1

WB row-normalizes

matrix WB. The factorization WH can now be re-

written as:

WH=AA
−1

WBB
−1

H=A(A−1
WB)(B−1

H)

which allows us to interpret A as P (ti), A
−1

WB

as P (zk|ti) and B
−1

H as P (cj |zk). These interpre-

tations are valid since the rows of A
−1

WB and of

B
−1

H sum to 1, matrix A is diagonal with trace 1

because elements in WH sum to 1, and all entries

are non-negative.

Latent Dirichlet Allocation LDA (Blei et al.,

2003) is a probabilistic model of text generation.

Each document d is modeled as a distribution

over K topics, which are themselves characterized

by distributions over words. The individual words

in a document are generated by repeatedly sampling

a topic according to the topic distribution and then

sampling a single word from the chosen topic.

More formally, we first draw the mixing propor-

tion over topics θd from a Dirichlet prior with pa-

rameters α. Next, for each of the Nd words wdn in

document d, a topic zdn is first drawn from a multi-

nomial distribution with parameters θdn. The prob-

ability of a word token w taking on value i given

that topic z = j is parametrized using a matrix β
with bij = P (w = i|z = j). Integrating out θd’s

and zdn’s, gives P (D|α,β), the probability of a cor-

pus (or document collection):

M�

d=1

�
P (θd|α)




Nd�

n=1

�

zdn

P (zdn|θd)P (wdn|zdn, β)



dθd

The central computational problem in topic

modeling is to obtain the posterior distri-

bution P (θ, z|w, α, β) of the hidden vari-

ables z = (z1, z2, . . . , zN ). given a docu-

ment w = (w1, w2, . . . , wN ). Although this

distribution is intractable in general, a variety

of approximate inference algorithms have been

proposed in the literature. We adopt the Gibbs

sampling procedure discussed in Griffiths and

Steyvers (2004). In this model, P (w = i|z = j) is

also a Dirichlet mixture (denoted φ) with symmetric

priors (denoted β).

We use LDA to induce senses of target words

based on context words, and therefore each row ti

in the input matrix transforms into a document. The

frequency of ti occurring with context feature cj is

the number of times word cj is encountered in the

“document” associated with ti. We train the LDA

model on this data to obtain the θ and φ distribu-
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• Ihr Produkt kann als komprimierte Form 
der Daten aus V angesehen werden
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Analogously, a number of probabilistic models

can be employed to induce the latent senses. Ex-

amples include Probabilistic Latent Semantic Anal-
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and Seung (2000)), and latent Dirichlet allocation

(LDA, Blei et al. (2003)). We give a more detailed

description of the latter two models as we employ
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VI,J ≈WI,KHK,J (5)

where W is a basis vector matrix and H is an en-
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NMF (Gaussier and Goutte, 2005; Ding et al., 2008)

and thus minimize the KL divergence between WH
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min
�

i,j

(Vi,j log
Vi,j

WHi,j
− Vi,j + WHi,j) (6)
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P (ti, cj) =
�

k P (ti)P (zk|ti)P (cj |zk).
Le WH denote the factors in a NMF decom-

position of an input matrix V and B be a diag-

onal matrix with Bkk =
�

j Hkj . B
−1

H gives a

row-normalized version of H . Similarly, given

matrix WB, we can define a diagonal matrix A,

with Aii =
�

k(WB)ik. A
−1

WB row-normalizes

matrix WB. The factorization WH can now be re-
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WH=AA
−1

WBB
−1

H=A(A−1
WB)(B−1

H)
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−1

WB

as P (zk|ti) and B
−1

H as P (cj |zk). These interpre-
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−1

WB and of

B
−1

H sum to 1, matrix A is diagonal with trace 1
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Latent Dirichlet Allocation LDA (Blei et al.,
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Each document d is modeled as a distribution
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sampling a single word from the chosen topic.

More formally, we first draw the mixing propor-

tion over topics θd from a Dirichlet prior with pa-

rameters α. Next, for each of the Nd words wdn in

document d, a topic zdn is first drawn from a multi-

nomial distribution with parameters θdn. The prob-

ability of a word token w taking on value i given

that topic z = j is parametrized using a matrix β
with bij = P (w = i|z = j). Integrating out θd’s

and zdn’s, gives P (D|α,β), the probability of a cor-

pus (or document collection):
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d=1
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P (θd|α)
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P (zdn|θd)P (wdn|zdn, β)



dθd

The central computational problem in topic

modeling is to obtain the posterior distri-

bution P (θ, z|w, α, β) of the hidden vari-

ables z = (z1, z2, . . . , zN ). given a docu-

ment w = (w1, w2, . . . , wN ). Although this

distribution is intractable in general, a variety

of approximate inference algorithms have been

proposed in the literature. We adopt the Gibbs

sampling procedure discussed in Griffiths and

Steyvers (2004). In this model, P (w = i|z = j) is

also a Dirichlet mixture (denoted φ) with symmetric

priors (denoted β).

We use LDA to induce senses of target words

based on context words, and therefore each row ti

in the input matrix transforms into a document. The

frequency of ti occurring with context feature cj is

the number of times word cj is encountered in the

“document” associated with ti. We train the LDA

model on this data to obtain the θ and φ distribu-
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Latent Dirichlet Allocation (LDA)

• Wahrscheinlichkeitsmodell für Textgenerierung
• Jedes Dokument d wird als eine Verteilung über K 

Themen angesehen
• Jedes Wort wiederum ist einem oder mehreren Themen 

zugeordnet
• Festlegung der Anzahl der Themen zu Beginn

23
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Experimente: Aufgaben

• Aufgaben:

• Test zur Wortähnlichkeit

• Test zur lexikalischen Substitution

24
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Test zur Wortähnlichkeit

• Modell repräsentiert Wörter durch eine Reihe von 
erzeugten Bedeutungen

• Experimente mit 2 Arten von Semantic Space, basierend 
auf NMF und LDA und optimierten Parametern für diese 
Modelle

• Beurteilung der Gleichheit zweier Wörter außerhalb des 
Kontextes

• Daten aus Finkelstein et al. 2002 (353 Wortpaare und ihre 
Ähnlichkeitswertung)

25

tions. θ gives the sense distributions of each tar-
get ti: θik = P (zk|ti) and φ the context-word dis-
tribution for each sense zk: φkj = P (cj |zk).

5 Experimental Set-up

In this section we discuss the experiments we per-
formed in order to evaluate our model. We describe
the tasks on which it was applied, the corpora used
for model training and our evaluation methodology.

Tasks The probabilistic model presented in Sec-
tion 3 represents words via a set of induced senses.
We experimented with two types of semantic space
based on NMF and LDA and optimized parameters
for these models on a word similarity task. The
latter involves judging the similarity sim(ti, t�

i) =
sim(v(ti), v(t�

i)) of words ti and t
�
i out of context,

where v(ti) and v(t�
i) are obtained from the output of

NMF or LDA, respectively. In our experiments we
used the data set of Finkelstein et al. (2002). It con-
tains 353 pairs of words and their similarity scores
as perceived by human subjects.

The contextualized representations were next
evaluated on lexical substitution (McCarthy and
Navigli, 2007). The task requires systems to find
appropriate substitutes for target words occurring in
context. Typically, systems are given a set of substi-
tutes, and must produce a ranking such that appro-
priate substitutes are assigned a higher rank com-
pared to non-appropriate ones. We made use of the
SemEval 2007 Lexical Substitution Task benchmark
data set. It contains 200 target words, namely nouns,
verbs, adjectives and adverbs, each of which occurs
in 10 distinct sentential contexts. The total set con-
tains 2,000 sentences. Five human annotators were
asked to provide substitutes for these target words.
Table 1 gives an example of the adjective still and
its substitutes.

Following Erk and Padó (2008), we pool together
the total set of substitutes for each target word.
Then, for each instance the model has to produce a
ranking for the total substitute set. We rank the can-
didate substitutes based on the similarity of the con-
textualized target and the out-of-context substitute,
sim(v(ti, cj), v(t�

i)), where ti is the target word, cj a
context word and t

�
i a substitute. Contextualizing

just one of the words brings higher discriminative
power to the model rather than performing compar-

Sentences Substitutes
It is important to apply the
herbicide on a still day, be-
cause spray drift can kill
non-target plants.

calm (5) not-windy (1)
windless (1)

A movie is a visual docu-
ment comprised of a series
of still images.

motionless (3) unmov-
ing (2) fixed (1) sta-
tionary (1) static (1)

Table 1: Lexical substitution data example for the adjec-
tive still ; numbers in parentheses indicate the frequency
of the substitute.

isons with the target and its substitute embedded in
an identical context (see also Thater et al. (2010) for
a similar observation).

Model Training All the models we experimented
with use identical input data, i.e., a bag-of-words
matrix extracted from the GigaWord collection of
news text. Rows in this matrix are target words and
columns are their co-occurring neighbors, within a
symmetric window of size 5. As context words, we
used a vocabulary of the 3,000 most frequent words
in the corpus.1

We implemented the classical NMF factorization
algorithm described in Lee and Seung (2000). The
input matrix was normalized so that all elements
summed to 1. We experimented with four dimen-
sions K: [600 − 1000] with step size 200. We ran
the algorithm for 150 iterations to obtain factors W

and H which we further processes as described in
Section 4 to obtain the desired probability distribu-
tions. Since the only parameter of the NMF model
is the factorization dimension K, we performed two
independent runs with each K value and averaged
their predictions.

The parameters for the LDA model are the num-
ber of topics K and Dirichlet priors α and β. We ex-
perimented with topics K: [600− 1400], again with
step size 200. We fixed β to 0.01 and tested two val-
ues for α: 2

K (Porteous et al., 2008) and 50
K (Griffiths

and Steyvers, 2004). We used Gibbs sampling on
the “document collection” obtained from the input
matrix and estimated the sense distributions as de-
scribed in Section 4. We ran the chains for 1000 iter-

1The GigaWord corpus contains 1.7B words; we scale down
all the counts by a factor of 70 to speed up the computation of
the LDA models. All models use this reduced size input data.
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Test zur Wortähnlichkeit
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possibility girl 1,94

population development 3,75

planet sun 8,02

planet star 8,45

planet space 7,92

planet people 5,75

planet moon 8,08

planet galaxy 8,11

planet constellation 8,06

planet astronomer 7,94

plane car 5,77

physics proton 8,12

physics chemistry 7,35

phone equipment 7,13

peace plan 4,75

peace insurance 2,94

peace atmosphere 3,69

Finkelstein et al. 2002 
(353 Wortpaare und ihre 
Ähnlichkeitswertung)
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Training des Modells
• Systeme bekommen eine Reihe von Substitutionswörtern für 

Zielwörter aus dem Kontext und müssen dann eine 
Rangordnung erstellen

• Geeignete Substitutionswörter sollen verglichen mit weniger 
geeigneten einen höheren Rang bekommen

• Benutzung des SemEval 2007 Lexical Substitution Task 
benchmark data set

• 200 Zielwörter aus 10 distinktiven Satzkontexten

• insgesamt 2.000 Sätze

• 5 menschliche Annotatoren bestimmen die Ersatzwörter
27

Test zur lexikalischen Substitution
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Training des Modells
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Test zur lexikalischen Substitution
tions. θ gives the sense distributions of each tar-
get ti: θik = P (zk|ti) and φ the context-word dis-
tribution for each sense zk: φkj = P (cj |zk).

5 Experimental Set-up

In this section we discuss the experiments we per-
formed in order to evaluate our model. We describe
the tasks on which it was applied, the corpora used
for model training and our evaluation methodology.

Tasks The probabilistic model presented in Sec-
tion 3 represents words via a set of induced senses.
We experimented with two types of semantic space
based on NMF and LDA and optimized parameters
for these models on a word similarity task. The
latter involves judging the similarity sim(ti, t�

i) =
sim(v(ti), v(t�

i)) of words ti and t
�
i out of context,

where v(ti) and v(t�
i) are obtained from the output of

NMF or LDA, respectively. In our experiments we
used the data set of Finkelstein et al. (2002). It con-
tains 353 pairs of words and their similarity scores
as perceived by human subjects.

The contextualized representations were next
evaluated on lexical substitution (McCarthy and
Navigli, 2007). The task requires systems to find
appropriate substitutes for target words occurring in
context. Typically, systems are given a set of substi-
tutes, and must produce a ranking such that appro-
priate substitutes are assigned a higher rank com-
pared to non-appropriate ones. We made use of the
SemEval 2007 Lexical Substitution Task benchmark
data set. It contains 200 target words, namely nouns,
verbs, adjectives and adverbs, each of which occurs
in 10 distinct sentential contexts. The total set con-
tains 2,000 sentences. Five human annotators were
asked to provide substitutes for these target words.
Table 1 gives an example of the adjective still and
its substitutes.

Following Erk and Padó (2008), we pool together
the total set of substitutes for each target word.
Then, for each instance the model has to produce a
ranking for the total substitute set. We rank the can-
didate substitutes based on the similarity of the con-
textualized target and the out-of-context substitute,
sim(v(ti, cj), v(t�

i)), where ti is the target word, cj a
context word and t

�
i a substitute. Contextualizing

just one of the words brings higher discriminative
power to the model rather than performing compar-

Sentences Substitutes
It is important to apply the
herbicide on a still day, be-
cause spray drift can kill
non-target plants.

calm (5) not-windy (1)
windless (1)

A movie is a visual docu-
ment comprised of a series
of still images.

motionless (3) unmov-
ing (2) fixed (1) sta-
tionary (1) static (1)

Table 1: Lexical substitution data example for the adjec-
tive still ; numbers in parentheses indicate the frequency
of the substitute.

isons with the target and its substitute embedded in
an identical context (see also Thater et al. (2010) for
a similar observation).

Model Training All the models we experimented
with use identical input data, i.e., a bag-of-words
matrix extracted from the GigaWord collection of
news text. Rows in this matrix are target words and
columns are their co-occurring neighbors, within a
symmetric window of size 5. As context words, we
used a vocabulary of the 3,000 most frequent words
in the corpus.1

We implemented the classical NMF factorization
algorithm described in Lee and Seung (2000). The
input matrix was normalized so that all elements
summed to 1. We experimented with four dimen-
sions K: [600 − 1000] with step size 200. We ran
the algorithm for 150 iterations to obtain factors W

and H which we further processes as described in
Section 4 to obtain the desired probability distribu-
tions. Since the only parameter of the NMF model
is the factorization dimension K, we performed two
independent runs with each K value and averaged
their predictions.

The parameters for the LDA model are the num-
ber of topics K and Dirichlet priors α and β. We ex-
perimented with topics K: [600− 1400], again with
step size 200. We fixed β to 0.01 and tested two val-
ues for α: 2

K (Porteous et al., 2008) and 50
K (Griffiths

and Steyvers, 2004). We used Gibbs sampling on
the “document collection” obtained from the input
matrix and estimated the sense distributions as de-
scribed in Section 4. We ran the chains for 1000 iter-

1The GigaWord corpus contains 1.7B words; we scale down
all the counts by a factor of 70 to speed up the computation of
the LDA models. All models use this reduced size input data.
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Test zur lexikalischen Substitution
tions. θ gives the sense distributions of each tar-
get ti: θik = P (zk|ti) and φ the context-word dis-
tribution for each sense zk: φkj = P (cj |zk).

5 Experimental Set-up

In this section we discuss the experiments we per-
formed in order to evaluate our model. We describe
the tasks on which it was applied, the corpora used
for model training and our evaluation methodology.

Tasks The probabilistic model presented in Sec-
tion 3 represents words via a set of induced senses.
We experimented with two types of semantic space
based on NMF and LDA and optimized parameters
for these models on a word similarity task. The
latter involves judging the similarity sim(ti, t�

i) =
sim(v(ti), v(t�

i)) of words ti and t
�
i out of context,

where v(ti) and v(t�
i) are obtained from the output of

NMF or LDA, respectively. In our experiments we
used the data set of Finkelstein et al. (2002). It con-
tains 353 pairs of words and their similarity scores
as perceived by human subjects.

The contextualized representations were next
evaluated on lexical substitution (McCarthy and
Navigli, 2007). The task requires systems to find
appropriate substitutes for target words occurring in
context. Typically, systems are given a set of substi-
tutes, and must produce a ranking such that appro-
priate substitutes are assigned a higher rank com-
pared to non-appropriate ones. We made use of the
SemEval 2007 Lexical Substitution Task benchmark
data set. It contains 200 target words, namely nouns,
verbs, adjectives and adverbs, each of which occurs
in 10 distinct sentential contexts. The total set con-
tains 2,000 sentences. Five human annotators were
asked to provide substitutes for these target words.
Table 1 gives an example of the adjective still and
its substitutes.

Following Erk and Padó (2008), we pool together
the total set of substitutes for each target word.
Then, for each instance the model has to produce a
ranking for the total substitute set. We rank the can-
didate substitutes based on the similarity of the con-
textualized target and the out-of-context substitute,
sim(v(ti, cj), v(t�

i)), where ti is the target word, cj a
context word and t

�
i a substitute. Contextualizing

just one of the words brings higher discriminative
power to the model rather than performing compar-

Sentences Substitutes
It is important to apply the
herbicide on a still day, be-
cause spray drift can kill
non-target plants.

calm (5) not-windy (1)
windless (1)

A movie is a visual docu-
ment comprised of a series
of still images.

motionless (3) unmov-
ing (2) fixed (1) sta-
tionary (1) static (1)

Table 1: Lexical substitution data example for the adjec-
tive still ; numbers in parentheses indicate the frequency
of the substitute.

isons with the target and its substitute embedded in
an identical context (see also Thater et al. (2010) for
a similar observation).

Model Training All the models we experimented
with use identical input data, i.e., a bag-of-words
matrix extracted from the GigaWord collection of
news text. Rows in this matrix are target words and
columns are their co-occurring neighbors, within a
symmetric window of size 5. As context words, we
used a vocabulary of the 3,000 most frequent words
in the corpus.1

We implemented the classical NMF factorization
algorithm described in Lee and Seung (2000). The
input matrix was normalized so that all elements
summed to 1. We experimented with four dimen-
sions K: [600 − 1000] with step size 200. We ran
the algorithm for 150 iterations to obtain factors W

and H which we further processes as described in
Section 4 to obtain the desired probability distribu-
tions. Since the only parameter of the NMF model
is the factorization dimension K, we performed two
independent runs with each K value and averaged
their predictions.

The parameters for the LDA model are the num-
ber of topics K and Dirichlet priors α and β. We ex-
perimented with topics K: [600− 1400], again with
step size 200. We fixed β to 0.01 and tested two val-
ues for α: 2

K (Porteous et al., 2008) and 50
K (Griffiths

and Steyvers, 2004). We used Gibbs sampling on
the “document collection” obtained from the input
matrix and estimated the sense distributions as de-
scribed in Section 4. We ran the chains for 1000 iter-

1The GigaWord corpus contains 1.7B words; we scale down
all the counts by a factor of 70 to speed up the computation of
the LDA models. All models use this reduced size input data.
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ring (n) call (5) telephone call (1) bell (1)

ring (n) band (2) fob (1) chain (1) hoop (1) holder (1) 
circle (1)

ring (n) circle (3) group (2) network (1)
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Training des Modells

• Für jedes Zielwort: Zusammenlegen aller Ersatzwörter 

• Modell muss eine Rangordnung für jede Ersatzmenge 
erstellen

• Anordnung basiert auf Ähnlichkeit des kontextualisierten 
Ziels und des Ersatzwortes außerhalb des Kontextes

• Einordnung von nur einem der Wörter im Kontext 

• Modell bekommt höheres Differenzierungspotenzial

29

Test zur lexikalischen Substitution
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Training des Modells
• Alle Modelle benutzen die gleichen Input Daten

• Eine bag-of-words Matrix aus der GigaWord Collection 
aus Nachrichtentexten

• Reihen: Zielwörter
• Spalten: Nachbarwörter ±5
• Kontextwörter: 3.000 der am meist vorkommenden 

Wörter aus dem Korpus
• Abstimmung der Modellvariablen

• Bestmögliche Instanziierung jedes Modelltyps
30

Experimente: Modelltraining

bag-of-words: ungeordnet, Grammatik nicht 
berücksichtigt, keine Wortordnung
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Baselines

• Alternative/Vergleich zu eigenen Modellen
• Ähnlichkeit außerhalb des Kontextes:

• LSA (Latent Semantic Analysis): sucht 
Hauptkomponenten in Reihe von Dokumenten 

• Simple semantic space: benutzt originale Input Matrix 
mit mehrere Bewertungsschemen

• Kontextualisierte Ähnlichkeit:
• Vektoraddition/Vektormultiplikation

31

Sonntag, 22. Januar 2012



Evaluation

• Wortähnlichkeitstest: Ähnlichkeitsanalyse, Vergleich 
zwischen menschlichen Bewertungen und deren 
zugehörigen Vektor-basierten Ähnlichkeitswerten 
(Spearman‘s p)

• Lexikalische Substitution: Vergleich Systembewertung/
Goldstandard Ranking mit Kendall‘s !b rank correlation

• Für alle kontextualisierten Modelle:                                                  
Kontext des Zielwortes = Nachbarwörter ±5

32
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Modelle Überblick

• SVS: simple co-occurrence based vector 
space model

• LSA: latent semantic analysis

• NMF: non-negative matrix factorization

• LDA: latent Dirichlet allocation

• Mixtures: LSAMIX, NMFMIX, LDAMIX

33

Sonntag, 22. Januar 2012



Ergebnisse: Wortähnlichkeit
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Model Spearman ρ

SVS 38.35

LSA 49.43

NMF 52.99
LDA 53.39
LSAMIX 49.76

NMFMIX 51.62

LDAMIX 51.97

Table 2: Results on out of context word similarity using

a simple co-occurrence based vector space model (SVS),

latent semantic analysis, non-negative matrix factoriza-

tion and latent Dirichlet allocation as individual models

with the best parameter setting (LSA, NMF, LDA) and as

mixtures (LSAMIX, NMFMIX, LDAMIX).

6 Results

Word Similarity Our results on word similar-

ity are summarized in Table 2. The simple co-

occurrence based vector space (SVS) performed best

with tf-idf weighting and the cosine similarity mea-

sure. With regard to LSA, we obtained best re-

sults with initial line normalization of the matrix,

K = 600 dimensions, and the scalar product sim-

ilarity measure while performing computations in

matrix U . Both NMF and LDA models are generally

better with a larger number of senses. NMF yields

best performance with K = 1000 dimensions and

the scalar product similarity measure. The best LDA

model also uses the scalar product, has K = 1200
topics, and α set to

50
K .

Following Reisinger and Mooney (2010), we also

evaluated mixture models that combine the output

of models with varying parameter settings. For both

NMF and LDA we averaged the similarity scores re-

turned by all runs. For comparison, we also present

an LSA mixture model over the (best) middle in-

terval K values. As can be seen, the LSA model

improves slightly, whereas NMF and LDA perform

worse than their best individual models.
3

Overall,

we observe that NMF and LDA yield significantly

(p < 0.01) better correlations than LSA and the sim-

3
It is difficult to relate our results to Reisinger and Mooney

(2010), due to differences in the training data and the vector rep-

resentations it gives rise to. As a comparison, a baseline config-

uration with tf-idf weighting and the cosine similarity measure

yields a correlation of 0.38 with our data and 0.49 in Reisinger

and Mooney (2010).

Model Kendall’s τb

SVS 11.05

Add-SVS 12.74

Add-NMF 12.85

Add-LDA 12.33

Mult-SVS 14.41

Mult-NMF 13.20

Mult-LDA 12.90

Cont-NMF 14.95

Cont-LDA 13.71

Cont-NMFMIX 16.01
Cont-LDAMIX 15.53

Table 3: Results on lexical substitution using a simple

semantic space model (SVS), additive and multiplicative

compositional models with vector representations based

on co-occurrences (Add-SVS, Mult-SVS), NMF (Add-

NMF, Mult-NMF), and LDA (Add-LDA, Mult-LDA) and

contextualized models based on NMF and LDA with the

best parameter setting (Cont-NMF, Cont-LDA) and as

mixtures (Cont-NMFMIX, Cont-LDAMIX).

ple semantic space, both as individual models and as

mixtures.

Lexical Substitution Our results on lexical sub-

stitution are shown in Table 3. As a baseline we

also report the performance of the simple semantic

space that does not use any contextual information.

This model returns the same ranking of the substi-

tute candidates for each instance, based solely on

their similarity with the target word. This is a rel-

atively competitive baseline as observed by Erk and

Padó (2008) and Thater et al. (2009).

We report results with contextualized NMF and

LDA as individual models (the best word similar-

ity settings) and as mixtures (as described above).

These are in turn compared against additive and

multiplicative compositional models. We imple-

mented an additive model with pmi weighting and

Lin’s similarity measure which is defined in an ad-

ditive fashion. The multiplicative model uses tf-

idf weighting and cosine similarity, which involves

multiplication of vector components. Other combi-

nations of weighting schemes and similarity mea-

sures delivered significantly lower results. We also

report results for these models when using the NMF

and LDA reduced representations.
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Model Spearman ρ

SVS 38.35

LSA 49.43

NMF 52.99
LDA 53.39
LSAMIX 49.76

NMFMIX 51.62

LDAMIX 51.97

Table 2: Results on out of context word similarity using

a simple co-occurrence based vector space model (SVS),

latent semantic analysis, non-negative matrix factoriza-

tion and latent Dirichlet allocation as individual models

with the best parameter setting (LSA, NMF, LDA) and as

mixtures (LSAMIX, NMFMIX, LDAMIX).

6 Results

Word Similarity Our results on word similar-

ity are summarized in Table 2. The simple co-

occurrence based vector space (SVS) performed best

with tf-idf weighting and the cosine similarity mea-

sure. With regard to LSA, we obtained best re-

sults with initial line normalization of the matrix,

K = 600 dimensions, and the scalar product sim-

ilarity measure while performing computations in

matrix U . Both NMF and LDA models are generally

better with a larger number of senses. NMF yields

best performance with K = 1000 dimensions and

the scalar product similarity measure. The best LDA

model also uses the scalar product, has K = 1200
topics, and α set to

50
K .

Following Reisinger and Mooney (2010), we also

evaluated mixture models that combine the output

of models with varying parameter settings. For both

NMF and LDA we averaged the similarity scores re-

turned by all runs. For comparison, we also present

an LSA mixture model over the (best) middle in-

terval K values. As can be seen, the LSA model

improves slightly, whereas NMF and LDA perform

worse than their best individual models.
3

Overall,

we observe that NMF and LDA yield significantly

(p < 0.01) better correlations than LSA and the sim-

3
It is difficult to relate our results to Reisinger and Mooney

(2010), due to differences in the training data and the vector rep-

resentations it gives rise to. As a comparison, a baseline config-

uration with tf-idf weighting and the cosine similarity measure

yields a correlation of 0.38 with our data and 0.49 in Reisinger

and Mooney (2010).

Model Kendall’s τb

SVS 11.05

Add-SVS 12.74

Add-NMF 12.85

Add-LDA 12.33

Mult-SVS 14.41

Mult-NMF 13.20

Mult-LDA 12.90

Cont-NMF 14.95

Cont-LDA 13.71

Cont-NMFMIX 16.01
Cont-LDAMIX 15.53

Table 3: Results on lexical substitution using a simple

semantic space model (SVS), additive and multiplicative

compositional models with vector representations based

on co-occurrences (Add-SVS, Mult-SVS), NMF (Add-

NMF, Mult-NMF), and LDA (Add-LDA, Mult-LDA) and

contextualized models based on NMF and LDA with the

best parameter setting (Cont-NMF, Cont-LDA) and as

mixtures (Cont-NMFMIX, Cont-LDAMIX).

ple semantic space, both as individual models and as

mixtures.

Lexical Substitution Our results on lexical sub-

stitution are shown in Table 3. As a baseline we

also report the performance of the simple semantic

space that does not use any contextual information.

This model returns the same ranking of the substi-

tute candidates for each instance, based solely on

their similarity with the target word. This is a rel-

atively competitive baseline as observed by Erk and

Padó (2008) and Thater et al. (2009).

We report results with contextualized NMF and

LDA as individual models (the best word similar-

ity settings) and as mixtures (as described above).

These are in turn compared against additive and

multiplicative compositional models. We imple-

mented an additive model with pmi weighting and

Lin’s similarity measure which is defined in an ad-

ditive fashion. The multiplicative model uses tf-

idf weighting and cosine similarity, which involves

multiplication of vector components. Other combi-

nations of weighting schemes and similarity mea-

sures delivered significantly lower results. We also

report results for these models when using the NMF

and LDA reduced representations.
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Model Spearman ρ

SVS 38.35

LSA 49.43

NMF 52.99
LDA 53.39
LSAMIX 49.76

NMFMIX 51.62

LDAMIX 51.97

Table 2: Results on out of context word similarity using

a simple co-occurrence based vector space model (SVS),

latent semantic analysis, non-negative matrix factoriza-

tion and latent Dirichlet allocation as individual models

with the best parameter setting (LSA, NMF, LDA) and as

mixtures (LSAMIX, NMFMIX, LDAMIX).

6 Results

Word Similarity Our results on word similar-

ity are summarized in Table 2. The simple co-

occurrence based vector space (SVS) performed best

with tf-idf weighting and the cosine similarity mea-

sure. With regard to LSA, we obtained best re-

sults with initial line normalization of the matrix,

K = 600 dimensions, and the scalar product sim-

ilarity measure while performing computations in

matrix U . Both NMF and LDA models are generally

better with a larger number of senses. NMF yields

best performance with K = 1000 dimensions and

the scalar product similarity measure. The best LDA

model also uses the scalar product, has K = 1200
topics, and α set to

50
K .

Following Reisinger and Mooney (2010), we also

evaluated mixture models that combine the output

of models with varying parameter settings. For both

NMF and LDA we averaged the similarity scores re-

turned by all runs. For comparison, we also present

an LSA mixture model over the (best) middle in-

terval K values. As can be seen, the LSA model

improves slightly, whereas NMF and LDA perform

worse than their best individual models.
3

Overall,

we observe that NMF and LDA yield significantly

(p < 0.01) better correlations than LSA and the sim-

3
It is difficult to relate our results to Reisinger and Mooney

(2010), due to differences in the training data and the vector rep-

resentations it gives rise to. As a comparison, a baseline config-

uration with tf-idf weighting and the cosine similarity measure

yields a correlation of 0.38 with our data and 0.49 in Reisinger

and Mooney (2010).

Model Kendall’s τb

SVS 11.05

Add-SVS 12.74

Add-NMF 12.85

Add-LDA 12.33

Mult-SVS 14.41

Mult-NMF 13.20

Mult-LDA 12.90

Cont-NMF 14.95

Cont-LDA 13.71

Cont-NMFMIX 16.01
Cont-LDAMIX 15.53

Table 3: Results on lexical substitution using a simple

semantic space model (SVS), additive and multiplicative

compositional models with vector representations based

on co-occurrences (Add-SVS, Mult-SVS), NMF (Add-

NMF, Mult-NMF), and LDA (Add-LDA, Mult-LDA) and

contextualized models based on NMF and LDA with the

best parameter setting (Cont-NMF, Cont-LDA) and as

mixtures (Cont-NMFMIX, Cont-LDAMIX).

ple semantic space, both as individual models and as

mixtures.

Lexical Substitution Our results on lexical sub-

stitution are shown in Table 3. As a baseline we

also report the performance of the simple semantic

space that does not use any contextual information.

This model returns the same ranking of the substi-

tute candidates for each instance, based solely on

their similarity with the target word. This is a rel-

atively competitive baseline as observed by Erk and

Padó (2008) and Thater et al. (2009).

We report results with contextualized NMF and

LDA as individual models (the best word similar-

ity settings) and as mixtures (as described above).

These are in turn compared against additive and

multiplicative compositional models. We imple-

mented an additive model with pmi weighting and

Lin’s similarity measure which is defined in an ad-

ditive fashion. The multiplicative model uses tf-

idf weighting and cosine similarity, which involves

multiplication of vector components. Other combi-

nations of weighting schemes and similarity mea-

sures delivered significantly lower results. We also

report results for these models when using the NMF

and LDA reduced representations.
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Model Adv Adj Noun Verb

SVS 22.47 14.38 09.52 7.98

Add-SVS 22.79 14.56 11.59 10.00

Mult-SVS 22.85 16.37 13.59 11.60

Cont-NMFMIX 26.13 17.10 15.16 14.18
Cont-LDAMIX 21.21 16.00 16.31 13.67

Table 4: Results on lexical substitution for different parts

of speech with a simple semantic space model (SVS), two

compositional models (Add-SVS, Mult-SVS), and con-

textualized mixture models with NMF and LDA (Cont-

NMFMIX, Cont-LDAMIX), using Kendall’s τb correlation

coefficient.

All models significantly (p < 0.01) outperform

the context agnostic simple semantic space (see

SVS in Table 3). Mixture NMF and LDA mod-

els are significantly better than all variants of com-

positional models (p < 0.01); the individual mod-

els are numerically better, however the difference

is not statistically significant. We also find that the

multiplicative model using a simple semantic space

(Mult-SVS) is the best performing compositional

model, thus corroborating the results of Mitchell and

Lapata (2009). Interestingly, dimensionality compo-

sitional models. This indicates that the better results

we obtain are due to the probabilistic formulation of

our contextualized model as a whole rather than the

use of NMF or LDA. Finally, we observe that the

Cont-NMF model is slightly better than Cont-LDA,

however the difference is not statistically significant.

To allow comparison with previous results re-

ported on this data set, we also used the General-

ized Average Precision (GAP, Kishida (2005)) as an

evaluation measure. GAP takes into account the or-

der of candidates ranked correctly by a hypothetical

system, whereas average precision is only sensitive

to their relative position. The best performing mod-

els are Cont-NMFMIX and Cont-LDAMIX obtaining

a GAP of 42.7% and 42.9%, respectively. Erk and

Padó (2010) report a GAP of 38.6% on this data set

with their best model.

Table 4 shows how the models perform across dif-

ferent parts of speech. While verbs and nouns seem

to be most difficult, we observe higher gains from

the use of contextualized models. Cont-LDAMIX

obtains approximately 7% absolute gain for nouns

and Cont-NMFMIX approximately 6% for verbs. All

Senses Word Distributions

TRAFFIC (0.18) road, traffic, highway, route, bridge
MUSIC (0.04) music, song, rock, band, dance, play
FAN (0.04) crowd, fan, people, wave, cheer, street
VEHICLE (0.04) car, truck, bus, train, driver, vehicle

Table 5: Induced senses of jam and five most likely words

given these senses using an LDA model; sense probabili-

ties are shown in parentheses.

contextualized models obtain smaller improvements

for adjectives. For adverbs most models do not im-

prove over the no-context setting, with the exception

Cont-NMFMIX.

Finally, we also qualitatively examined how the

context words influence the sense distributions of

target words using examples from the lexical sub-

stitution dataset and the output of an individual

Cont-LDA model. In many cases, a target word

starts with a distribution spread over a larger number

of senses, while a context word shifts this distribu-

tion to one majority sense. Consider, for instance,

the target noun jam in the following sentence:

(1) With their transcendent, improvisational jams

and Mayan-inspired sense of a higher, meta-

physical purpose, the band’s music delivers a

spiritual sustenance that has earned them a very

devoted core following.

Table 5 shows the out-of-context senses activated

for jam together with the five most likely words as-

sociated with them.
4

Sense probabilities are also

shown in parentheses. As can be seen, initially two

traffic-related and two music-related senses are acti-

vated, however with low probabilities. In the pres-

ence of the context word band, we obtain a much

more “focused” distribution, in which the MUSIC

sense has 0.88 probability. The system ranks riff
and gig as the most likely two substitutes for jam.

The gold annotation also lists session as a possible

substitute.

In a large number of cases, the target is only par-

tially disambiguated by a context word and this is

also reflected in the resulting distribution. An ex-

4
Sense names are provided by the authors in an attempt to

best describe the clusters (i.e., topics for LDA) to which words

are assigned.
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Model Adv Adj Noun Verb

SVS 22.47 14.38 09.52 7.98

Add-SVS 22.79 14.56 11.59 10.00

Mult-SVS 22.85 16.37 13.59 11.60

Cont-NMFMIX 26.13 17.10 15.16 14.18
Cont-LDAMIX 21.21 16.00 16.31 13.67

Table 4: Results on lexical substitution for different parts

of speech with a simple semantic space model (SVS), two

compositional models (Add-SVS, Mult-SVS), and con-

textualized mixture models with NMF and LDA (Cont-

NMFMIX, Cont-LDAMIX), using Kendall’s τb correlation

coefficient.

All models significantly (p < 0.01) outperform

the context agnostic simple semantic space (see

SVS in Table 3). Mixture NMF and LDA mod-

els are significantly better than all variants of com-

positional models (p < 0.01); the individual mod-

els are numerically better, however the difference

is not statistically significant. We also find that the

multiplicative model using a simple semantic space

(Mult-SVS) is the best performing compositional

model, thus corroborating the results of Mitchell and

Lapata (2009). Interestingly, dimensionality compo-

sitional models. This indicates that the better results

we obtain are due to the probabilistic formulation of

our contextualized model as a whole rather than the

use of NMF or LDA. Finally, we observe that the

Cont-NMF model is slightly better than Cont-LDA,

however the difference is not statistically significant.

To allow comparison with previous results re-

ported on this data set, we also used the General-

ized Average Precision (GAP, Kishida (2005)) as an

evaluation measure. GAP takes into account the or-

der of candidates ranked correctly by a hypothetical

system, whereas average precision is only sensitive

to their relative position. The best performing mod-

els are Cont-NMFMIX and Cont-LDAMIX obtaining

a GAP of 42.7% and 42.9%, respectively. Erk and

Padó (2010) report a GAP of 38.6% on this data set

with their best model.

Table 4 shows how the models perform across dif-

ferent parts of speech. While verbs and nouns seem

to be most difficult, we observe higher gains from

the use of contextualized models. Cont-LDAMIX

obtains approximately 7% absolute gain for nouns

and Cont-NMFMIX approximately 6% for verbs. All

Senses Word Distributions

TRAFFIC (0.18) road, traffic, highway, route, bridge
MUSIC (0.04) music, song, rock, band, dance, play
FAN (0.04) crowd, fan, people, wave, cheer, street
VEHICLE (0.04) car, truck, bus, train, driver, vehicle

Table 5: Induced senses of jam and five most likely words

given these senses using an LDA model; sense probabili-

ties are shown in parentheses.

contextualized models obtain smaller improvements

for adjectives. For adverbs most models do not im-

prove over the no-context setting, with the exception

Cont-NMFMIX.

Finally, we also qualitatively examined how the

context words influence the sense distributions of

target words using examples from the lexical sub-

stitution dataset and the output of an individual

Cont-LDA model. In many cases, a target word

starts with a distribution spread over a larger number

of senses, while a context word shifts this distribu-

tion to one majority sense. Consider, for instance,

the target noun jam in the following sentence:

(1) With their transcendent, improvisational jams

and Mayan-inspired sense of a higher, meta-

physical purpose, the band’s music delivers a

spiritual sustenance that has earned them a very

devoted core following.

Table 5 shows the out-of-context senses activated

for jam together with the five most likely words as-

sociated with them.
4

Sense probabilities are also

shown in parentheses. As can be seen, initially two

traffic-related and two music-related senses are acti-

vated, however with low probabilities. In the pres-

ence of the context word band, we obtain a much

more “focused” distribution, in which the MUSIC

sense has 0.88 probability. The system ranks riff
and gig as the most likely two substitutes for jam.

The gold annotation also lists session as a possible

substitute.

In a large number of cases, the target is only par-

tially disambiguated by a context word and this is

also reflected in the resulting distribution. An ex-

4
Sense names are provided by the authors in an attempt to

best describe the clusters (i.e., topics for LDA) to which words

are assigned.
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• Vergleich mit bisherigen Modellen 
• Generalized Average Precision (GAP, Kishida (2005)) als 

Bewertungsmaß
• GAP berücksichtigt die Anordnung der richtig 

angeordneten Kandidaten durch ein theoretisches System
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Modell GAP
Erk und Padó (2008) 27,4
Erk und Padó (2010) 38,6

Cont-NMFMIX 42,7
Cont-LDAMIX 42,9
Thater et al. 46,0
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Auswirkungen von Kontextwörtern auf 
Whk-Verteilung

• Test wie Kontextwörter die 
Wahrscheinlichkeitsverteilungen der Zielwörter 
beeinflussen

• Beispiele aus dem lexical substitution dataset und dem 
Output eines individuellen Cont-LDA Modells

• Oft: Zielwort fängt mit Whk-Verteilung über eine große 
Anzahl von Bedeutungen an

• Kontextwort lagert diese Verteilung auf eine 
Hauptbedeutung um
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„With their transcendent, improvisational jams and Mayan-
inspired sense of a higher, meta- physical purpose, the band’s 
music delivers a spiritual sustenance that has earned them a 
very devoted core following.“

Model Adv Adj Noun Verb

SVS 22.47 14.38 09.52 7.98

Add-SVS 22.79 14.56 11.59 10.00

Mult-SVS 22.85 16.37 13.59 11.60

Cont-NMFMIX 26.13 17.10 15.16 14.18
Cont-LDAMIX 21.21 16.00 16.31 13.67

Table 4: Results on lexical substitution for different parts

of speech with a simple semantic space model (SVS), two

compositional models (Add-SVS, Mult-SVS), and con-

textualized mixture models with NMF and LDA (Cont-

NMFMIX, Cont-LDAMIX), using Kendall’s τb correlation

coefficient.

All models significantly (p < 0.01) outperform

the context agnostic simple semantic space (see

SVS in Table 3). Mixture NMF and LDA mod-

els are significantly better than all variants of com-

positional models (p < 0.01); the individual mod-

els are numerically better, however the difference

is not statistically significant. We also find that the

multiplicative model using a simple semantic space

(Mult-SVS) is the best performing compositional

model, thus corroborating the results of Mitchell and

Lapata (2009). Interestingly, dimensionality compo-

sitional models. This indicates that the better results

we obtain are due to the probabilistic formulation of

our contextualized model as a whole rather than the

use of NMF or LDA. Finally, we observe that the

Cont-NMF model is slightly better than Cont-LDA,

however the difference is not statistically significant.

To allow comparison with previous results re-

ported on this data set, we also used the General-

ized Average Precision (GAP, Kishida (2005)) as an

evaluation measure. GAP takes into account the or-

der of candidates ranked correctly by a hypothetical

system, whereas average precision is only sensitive

to their relative position. The best performing mod-

els are Cont-NMFMIX and Cont-LDAMIX obtaining

a GAP of 42.7% and 42.9%, respectively. Erk and

Padó (2010) report a GAP of 38.6% on this data set

with their best model.

Table 4 shows how the models perform across dif-

ferent parts of speech. While verbs and nouns seem

to be most difficult, we observe higher gains from

the use of contextualized models. Cont-LDAMIX

obtains approximately 7% absolute gain for nouns

and Cont-NMFMIX approximately 6% for verbs. All

Senses Word Distributions

TRAFFIC (0.18) road, traffic, highway, route, bridge
MUSIC (0.04) music, song, rock, band, dance, play
FAN (0.04) crowd, fan, people, wave, cheer, street
VEHICLE (0.04) car, truck, bus, train, driver, vehicle

Table 5: Induced senses of jam and five most likely words

given these senses using an LDA model; sense probabili-

ties are shown in parentheses.

contextualized models obtain smaller improvements

for adjectives. For adverbs most models do not im-

prove over the no-context setting, with the exception

Cont-NMFMIX.

Finally, we also qualitatively examined how the

context words influence the sense distributions of

target words using examples from the lexical sub-

stitution dataset and the output of an individual

Cont-LDA model. In many cases, a target word

starts with a distribution spread over a larger number

of senses, while a context word shifts this distribu-

tion to one majority sense. Consider, for instance,

the target noun jam in the following sentence:

(1) With their transcendent, improvisational jams

and Mayan-inspired sense of a higher, meta-

physical purpose, the band’s music delivers a

spiritual sustenance that has earned them a very

devoted core following.

Table 5 shows the out-of-context senses activated

for jam together with the five most likely words as-

sociated with them.
4

Sense probabilities are also

shown in parentheses. As can be seen, initially two

traffic-related and two music-related senses are acti-

vated, however with low probabilities. In the pres-

ence of the context word band, we obtain a much

more “focused” distribution, in which the MUSIC

sense has 0.88 probability. The system ranks riff
and gig as the most likely two substitutes for jam.

The gold annotation also lists session as a possible

substitute.

In a large number of cases, the target is only par-

tially disambiguated by a context word and this is

also reflected in the resulting distribution. An ex-

4
Sense names are provided by the authors in an attempt to

best describe the clusters (i.e., topics for LDA) to which words

are assigned.
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„With their transcendent, improvisational jams and Mayan-
inspired sense of a higher, meta- physical purpose, the band’s 
music delivers a spiritual sustenance that has earned them a 
very devoted core following.“

Model Adv Adj Noun Verb

SVS 22.47 14.38 09.52 7.98

Add-SVS 22.79 14.56 11.59 10.00

Mult-SVS 22.85 16.37 13.59 11.60

Cont-NMFMIX 26.13 17.10 15.16 14.18
Cont-LDAMIX 21.21 16.00 16.31 13.67

Table 4: Results on lexical substitution for different parts

of speech with a simple semantic space model (SVS), two

compositional models (Add-SVS, Mult-SVS), and con-

textualized mixture models with NMF and LDA (Cont-

NMFMIX, Cont-LDAMIX), using Kendall’s τb correlation

coefficient.

All models significantly (p < 0.01) outperform

the context agnostic simple semantic space (see

SVS in Table 3). Mixture NMF and LDA mod-

els are significantly better than all variants of com-

positional models (p < 0.01); the individual mod-

els are numerically better, however the difference

is not statistically significant. We also find that the

multiplicative model using a simple semantic space

(Mult-SVS) is the best performing compositional

model, thus corroborating the results of Mitchell and

Lapata (2009). Interestingly, dimensionality compo-

sitional models. This indicates that the better results

we obtain are due to the probabilistic formulation of

our contextualized model as a whole rather than the

use of NMF or LDA. Finally, we observe that the

Cont-NMF model is slightly better than Cont-LDA,

however the difference is not statistically significant.

To allow comparison with previous results re-

ported on this data set, we also used the General-

ized Average Precision (GAP, Kishida (2005)) as an

evaluation measure. GAP takes into account the or-

der of candidates ranked correctly by a hypothetical

system, whereas average precision is only sensitive

to their relative position. The best performing mod-

els are Cont-NMFMIX and Cont-LDAMIX obtaining

a GAP of 42.7% and 42.9%, respectively. Erk and

Padó (2010) report a GAP of 38.6% on this data set

with their best model.

Table 4 shows how the models perform across dif-

ferent parts of speech. While verbs and nouns seem

to be most difficult, we observe higher gains from

the use of contextualized models. Cont-LDAMIX

obtains approximately 7% absolute gain for nouns

and Cont-NMFMIX approximately 6% for verbs. All

Senses Word Distributions

TRAFFIC (0.18) road, traffic, highway, route, bridge
MUSIC (0.04) music, song, rock, band, dance, play
FAN (0.04) crowd, fan, people, wave, cheer, street
VEHICLE (0.04) car, truck, bus, train, driver, vehicle

Table 5: Induced senses of jam and five most likely words

given these senses using an LDA model; sense probabili-

ties are shown in parentheses.

contextualized models obtain smaller improvements

for adjectives. For adverbs most models do not im-

prove over the no-context setting, with the exception

Cont-NMFMIX.

Finally, we also qualitatively examined how the

context words influence the sense distributions of

target words using examples from the lexical sub-

stitution dataset and the output of an individual

Cont-LDA model. In many cases, a target word

starts with a distribution spread over a larger number

of senses, while a context word shifts this distribu-

tion to one majority sense. Consider, for instance,

the target noun jam in the following sentence:

(1) With their transcendent, improvisational jams

and Mayan-inspired sense of a higher, meta-

physical purpose, the band’s music delivers a

spiritual sustenance that has earned them a very

devoted core following.

Table 5 shows the out-of-context senses activated

for jam together with the five most likely words as-

sociated with them.
4

Sense probabilities are also

shown in parentheses. As can be seen, initially two

traffic-related and two music-related senses are acti-

vated, however with low probabilities. In the pres-

ence of the context word band, we obtain a much

more “focused” distribution, in which the MUSIC

sense has 0.88 probability. The system ranks riff
and gig as the most likely two substitutes for jam.

The gold annotation also lists session as a possible

substitute.

In a large number of cases, the target is only par-

tially disambiguated by a context word and this is

also reflected in the resulting distribution. An ex-

4
Sense names are provided by the authors in an attempt to

best describe the clusters (i.e., topics for LDA) to which words

are assigned.

1169

0,88 !
+
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Auswirkungen von Kontextwörtern auf 
Whk-Verteilung: Probleme

• Oft wird das Zielwort nur teilweise durch ein Kontextwort 
disambiguiert

• Spiegelt sich auch in der resultierenden Verteilung 
wider

42

bug --->    software        (0,09)
disease          (0,06)

bug --->    secret agency (0,34)
software         (0,29)

Kontext: client
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Auswirkungen von Kontextwörtern auf 
Whk-Verteilung: Probleme

• Oft wird das Zielwort nur teilweise durch ein Kontextwort 
disambiguiert

• Spiegelt sich auch in der resultierenden Verteilung 
wider

• Kontextualisierte Verteilung kann falsch sein
• Bsp: Bedeutungen sind Domain-spezifisch
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43

function (im mathematischen Sinne) mit Kontextwort distribution
--> ausgelöste Bedeutungen alle aus „dienstlichen“ Sektor
(function = Funktion, Amt, ...)

• Konsequenz des benutzten Nachrichtenkorpus
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Auswirkungen von Kontextwörtern auf 
Whk-Verteilung: Probleme

• Oft wird das Zielwort nur teilweise durch ein Kontextwort 
disambiguiert

• Spiegelt sich auch in der resultierenden Verteilung 
wider

• Kontextualisierte Verteilung kann falsch sein
• Bsp: Bedeutungen sind Domain-spezifisch

• Zielwort und eines der Kontextwörter werden 
Bedeutungen zugeteilt, die lokal korrekt sind, aber falsch 
im größeren Kontext

44

„Check the shoulders so it hangs well, stops at hips or below, and make 
sure the pants are long enough.“

---> Injury (0,81) oder Ball-Sports (0,10)
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Fazit

• Schlüssel dieses Verfahrens:

• Fundiert probabilistisches Modell

• Repräsentation von Wortbedeutung als eine 
Verteilung über eine Reihe von globalen 
Bedeutungen (nicht mehr nur Wörter!)

• Kontextualisierte Bedeutung ist als eine 
Veränderung in dieser Verteilung modeliert

45
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Fazit

• Nutzung von NMF und LDA zur Herbeiführung der 
verborgenen Struktur

• Überbieten bisherige Modelle zur Bedeutungsähnlichkeit 
im Kontext

• Beide profitieren von der Vermischung der 
Modellvorhersagen über eine Reihe von verschiedenen 
Parametermöglichkeiten

46
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Fazit
• Viele und verschiedene Richtungen für die Zukunft
• Modell macht Unterschied zwischen Zielwörtern und 

Kontextmerkmalen
• Benutzt allerdings Vektorrepräsentationen, die nicht 

unterscheiden
• Zur Erleichterung für den Vergleich mit gängigen        

bag-of-words Vektor space Modellen
• Differenzierung zwischen Zielwort und Kontext-

repräsentation vorteilhaft
• Ähnlichkeitsberechnungen werden für andere Aufgaben 

gebraucht (Aneignung von Paraphrasen, Lexikaaufbau)
47
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Fazit

• Modell kontextualisiert Zielwörter in Bezug auf die 
individuellen Kontexte 

• Idealerweise könnte der kollektive Einfluss von 
mehreren Wörtern auf das Ziel berechnet werden

• Pläne: weitere Forschung zur Auswahl oder zur 
besseren Anhäufung aller aus dem Kontext 
extrahierten Merkmale

48
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Ende

•Fragen?

49
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