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Approaches to POS tagging

rule-based

◮ look up words in the lexicon to get a list of potential POS tags
◮ apply hand-written rules to select the best candidate tag

probabilistic models
◮ for a string of words W = w 1 , w 2 , w 3 , ..., wn

find the string of POS tags T = t1 , t2 , t3 , ..., tn

which maximises P(T |W )
(⇒ the probability of tag T given that the word is W)

◮ mostly based on (first or second order) Markov Models:
estimate transition probabilities ⇒ How probable is it to see POS tag Z
after having seen tag Y on position x

−1 and tag X on position x
−2?

Basic idea of ngram tagger:

current state only depends on previous n states: p(tn|tn−2 tn−1 )
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How to compute transition probabilities?

How do we get p(tn|tn−2 tn−1 ) ?

many ways to do it...

e.g. Maximum Likelihood Estimation (MLE)

◮ p(tn|tn−2 tn−1 ) = F (tn−2 tn−1 tn)
F (tn−2 tn−1 )

◮
F (the/DET white/ADJ house/N)

F (the/DET white/ADJ)

Problems:
◮ zero probabilities (might be ingrammatical or just rare)
◮ unreliable counts for rare events
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Treetagger

probabilistic

uses decision trees to estimate transition probabilities
⇒ avoid sparse data problems

How does it work?

◮ decision tree automatically determines the context size used for
estimating transition probabilities

◮ context: unigrams, bigrams, trigrams as well as negations of them
(e.g. tn−1=ADJ and tn−2 6= ADJ and tn−3 = DET)

◮ probability of an n-gram is determined by following the corresponding
path through the tree until a leaf is reached

◮ improves on sparse data, avoids zero frequencies
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Treetagger
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Stanford log-linear POS tagger

ML-based approach based on maximum entropy models

Idea: improving the tagger by extending the knowledge sources, with
a focus on unknown words

Include linguistically motivated, non-local features:
◮ more extensive treatment of capitalization for unknown words
◮ features for disambiguation of tense form of verbs
◮ features for disambiguating particles from prepositions and adverbs

Advantage of Maxent: does not assume independence between
predictors

Choose the probability distribution p that has the highest entropy out
of those distributions that satisfy a certain set of constraints

Constraints ⇒ statistics from the training data (not restricted to
n−gram sequences)
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C&C Taggers

Based on maximum entropy models

highly efficient!

State-of-the-art results:
◮ deleting the correction feature for GIS (Generalised Iterative Scaling)
◮ smoothing of parameters of the ME model: replacing simple frequency

cutoff by Gaussian prior (form of maximum a posteriori estimation
rather than a maximum likelihood estimation)

⋆ penalises models that have very large positive or negative weights
⋆ allows to use low frequency features without overfitting
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The Stanford Parser

Factored model: compute semantic (lexical dependency) and
syntactic (PCFG) structures using separate models

combine results in a new, generative model

P(T ,D) = P(T )P(D) (1)

Advantages:
◮ conceptual simplicity
◮ each model can be improved seperately
◮ effective A* parsing algorithm (enables efficient, exact inference)
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The Stanford Parser
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The Stanford Parser

P(T): use more accurate PCFGs

annotate tree nodes with contextual markers
(weaken PCFG independence assumptions)

◮ PCFG-PA: Parent encoding

(S (NP (N Man) ) (VP (V bites) (NP (N dog) ) ) )

(S (NPˆS (N Man) ) (VPˆS (V bites) (NPˆVP (N dog) ) ) )

◮ PCFG-LING: selective parent splitting, order-2 rule markovisation, and
linguistically-derived feature splits
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The Stanford Parser

P(D): lexical dependency models over tagged words
1 generate head of constituent
2 generate right dependents until a STOP token is generated
3 generate left dependents until a STOP token is generated

word-word dependency models are sparse ⇒ smoothing needed
◮ DEP-BASIC: generate a dependent conditioned on the head and

direction → can capture bilexical selectional preferences, such as the
affinity between payrolls and fell

◮ DEP-VAL: condition not only on direction, but also on distance and
valence
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Dependency Tree

Namhafte

AT
TR

Verstärkungen

OBJA

hingegen

A
D

V

wird es

SUBJ

für

PP

die

DET

nächste

AT
TR

Spielzeit

PN

nicht

ADV

geben

AUX

.

“However, there won’t be considerable reinforcements for the next playing time”
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The Stanford Parser

1 Extract the PCFG sub-model and set up the PCFG parser

2 Use the PCFG parser to find outside scores αPCFG (e) for each edge

3 Extract the dependency sub-model and set up the dependency parser

4 Use the dependency parser to find outside scores αDEP (e) for each
edge

5 Combine PCFG and dependency sub-models into the lexicalized model

6 Form the combined outside estimate a(e) = αPCFG (e) + αDEP(e)

7 Use the lexicalized A* parser, with a(e) as an A* estimate of α(e)
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The Berkeley Parser

Observed treebank categories too coarse-grained

Idea: treebank refinement using latent variables
◮ learn an optimally refined grammar for parsing
◮ refine the observed trees with latent variables and learn subcategories
◮ basic nonterminal symbols are alternately split and merged to maximize

the likelihood of the training treebank
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The Berkeley Parser

Start with a minimal X-Bar grammar and learn increasingly refined
grammars in a hierarchical split-and-merge fashion

1 start with a simple X-bar grammar

2 binarise the trees
3 split-and-merge technique:

◮ repeatedly split and re-train the grammar
◮ use Expectation Maximisation (EM) to learn a new grammar whose

nonterminals are subsymbols of the original nonterminals

4 in each iteration, initialize EM with results of the previous round’s
grammar

5 split every previous symbol in two

6 after training all splits, measure for each one the loss in likelihood
incurred by removing (merging) it
⇒ keep the ones whose removal causes a considerable loss
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The Berkeley Parser

split-and-merge

Splitting provides an increasingly tight fit to the training data, while
merging improves generalization and controls grammar size
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