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Motivation (1)

Current trends in NLP

statistical systems vs. rule-based systems

availability of manually annotated corpora for testing and
training systems

development of state-of-the art NLP tools (part-of-speech
taggers, parsers, named entity taggers, semantic role labellers,
word sense disambiguators)
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Motivation (2)

But . . .

most annotated data from the news domain or even one
specific newspaper (i.e., Wall Street Journal)

What if you want to process fiction texts, weblogs or scientific
papers?

⇒ portability of tools is a problem!
⇒ domain adaptation is a hot research topic
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Scope of the Course

1 learn about different domains and genres and their influence
on the linguistic properties of a text

2 learn about domain adaptation methods (e.g., data-driven vs.
algorithmic)

3 familiarise yourself with the use of different NLP tools
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Organisational Stuff

Project Seminar

for B.Sc. and M.Sc.(CL, LT)

5 CPs

presentation, practical work, report

Seminar

for B.Sc. and M.Sc. (CL, LT)

4 CPs (presentation only), 7 CPs (presentation and term
paper)

presentation, optionally term paper
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Course Structure

Mix of practical and theoretical sessions

weeks 1-5: practical sessions, hands-on experience with NLP
tools, tutorials (tutor: Linlin Li)

from week 6: theoretical part (plus practical work on domain
adaptation for project seminar)
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Schedule for the first weeks (preliminary)

date Tut/Sem What

15.10. sem introduction
22.10. tut presentation of two pos-taggers

(stanford, treetagger) and parsers
(stanford, berkeley), exercises

29.10. tut presentation of WSD tool, exercises
5.11. tut visualisation, machine learning
12.11. sem introduction to domains / genres
19.11. sem linguistic differences of domains and genres
26.11. sem methods for domain adaption
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Domain Adaptation – Why do we need it?

Data-Driven Approaches to NLP

manually apply

annotated → training → to new

corpus text

Problem:
Overfitting (model too closely adapted to training data)
e.g. distribution of PP attachment in treebanks
She saw the man/NN (PP with the telescope)
→ TüBa-D/Z 74% noun attachment
→ TiGer: only 57% noun attachment
⇒ parsers trained on TüBa-D/Z overgenerate to noun
attachment

Solution:
use TüBa-D/Z-trained parsers to parse text from the
TüBa-D/Z corpus only? Not a good idea!
Annotate more data? Not feasible!

Adapt existing tools to new genres and domains
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TüBa-D/Z corpus only? Not a good idea!
Annotate more data? Not feasible!

Adapt existing tools to new genres and domains

Caroline Sporleder, Ines Rehbein Introduction



Domain Adaptation – Why do we need it?

Data-Driven Approaches to NLP

manually apply

annotated → training → to new

corpus text

Problem:
Overfitting (model too closely adapted to training data)
e.g. distribution of PP attachment in treebanks
She saw the man/NN (PP with the telescope)
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use TüBa-D/Z-trained parsers to parse text from the
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→ TüBa-D/Z 74% noun attachment
→ TiGer: only 57% noun attachment
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TüBa-D/Z corpus only? Not a good idea!
Annotate more data? Not feasible!

Adapt existing tools to new genres and domains

Caroline Sporleder, Ines Rehbein Introduction



Domain Adaptation – Algorithmic vs. Data-driven

Algorithmic vs. Data-driven – What’s the difference?

Algorithmic

Change/improve Machine Learning algorithm to get better
performance on new domain
e.g.: let the algorithm learn the relative importance of features
for a specific domain

Data-driven

Change training data – add training instances from new
domain
e.g.: Active Learning (minimise human annotation effort by
carefully selecting the most informative training instances)
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Domain Dependence – Why does performance drop?

P(x) Different distribution in training and test data

e.g. Word Sense Disambiguation (WSD): bank (financial
institute; Wall Street Journal) vs. bank (river bank; travel
guide)

P(y |x) same instance has different labels in training and test
data

She wanted a pet and her parents bought her a mouse.
She got a new computer and her parents bought her a mouse.

No training instances for test data

e.g. specialised uses/technical terms

Problems caused by unseen words from new domains

Possible solutions?
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Domain Adaptation – Possible Approaches

Algorithmic:

Adapt the weights of training instances (some instances
generalise to all domains, some are highly domain-specific)

Adapt feature weights (different weights for features from
source/target domain)

Data-driven:

Add new training instances from the target domain (human
annotation, expensive)
Minimise annotation effort through Active Learning
Semi-supervised approaches, self-training (not clear if it works)
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Domain Adaptation – Summary

Domain Adaptation is an important problem for NLP

Different approaches/strategies to tackle the problem

ML algorithms
training data
semi-supervised approaches, self-training, re-ranking (?)
...

There’s still a lot to do...
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