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 Introduction to Self Training

 Previous applications of Self-Training

 Why and when does self-training actually work for parsing 
and improve performance?



Introduction to ST



 Θ = number of iterations performed

 Ω = seed (amount of labeled training data)

 Φ = set of sentences per iteration

 Π = probability with which a sentence is accepted
during a ST-iteration



Function Train(Ω, Φ, Θ, Π)

Model := Train(Ω)
TrainingData := Ω
For i = 1 To Θ

LabeledData := Use(Model, Φ[i])
TrainingData := Combine(TrainingData, LabeledData)

Model := Train(TrainingData, Π)
Next

Return Model



Previous applications of 
Self-Training

(using generative parsers)



Input

• sentence

Parsing

• generative 
Parser

Result

• parsed tree



 by Charniak (1997)

 Parser trained on the Wall Street Journal

 New model using 30 million words of unparsed WSJ 
text

 Model getting worse and worse for a larger Θ



 Used different trained models

 Performed many iterations of ST

 Φ = ~30

 Max(|Ω|) =~10.000 sentences (WSJ)

  training did not yield a significant gain



 |Ω| is small

 Θ = 1

 Model improved by using Θ = 1



 Usage of generative PCFG parsers

 The larger Θ gets the lower the performance
◦ Θ = 1 will result in better performance

 The full effect of |Ω| is still unclear

 There were no qualified theories why and when the 
parameters influence the performance



ST with Reranking Parsers



 Consists of two stages:

◦ Generative lexicalized PCFG parser
(which proposes a list of the n-best parse trees)

◦ Discriminative reranker
(which reorders the n-best list to extract the best parse 
tree)



Input

• sentence

Parsing

• N-best 
generative Parser

Trees

• N-best parse 
trees

Reranking

• discriminative 
reranker

Result

• parse tree



 Self-Training using this two-stage processing improves 
parsing accuracy
(McClosky et. Al 2008)

 |Ω| is quite large

 Θ = 1

 Model was improved



Why & when is ST useful

(with Reranking Parsers)



1. ST helps after a phase transition

2. ST reduces search errors

3. ST improves more using specific classes of reranker 
features

4. ST helps to handle new combinations of known
(and unknown) words
(so called new bilexical dependencies)



 The hypothesis:

◦ If a parser has achieved a certain (very) high threshold 
of performance the labels will be “good enough” for ST.

 Verification:

◦ 2 tests with |Ω| = 10% & |Ω| = 100% from WSJ

[ S∊ Ω : |S| ≤ 100 ]

◦ Θ = 1  &  Φ = ~1 Million from NANC, Π = 0.1



Performance

ST helpsST decreases performance

Threshold
F-score ~90



Performance

PCFG Parser
F:  89.9%
D: 100% WSJ

Reranking Parser
F:  91.5%
D: 100% WSJ

% WSJ Parser f-score Reranking P. f-score

10   (3,995 sentences) 85.8 87.0

100  (39,832 sentences) 89.9 91.5

PCFG Parser
F:  85.8%
D: 10% WSJ

Reranking Parser
F:  87.0%
D: 10% WSJ



Performance

PCFG Parser
F:  89.9%
D: 100% WSJ

Reranking Parser
F:  91.5%
D: 100% WSJ

PCFG Parser
F:  85.8%
D: 10% WSJ

Reranking Parser
F:  87.0%
D: 10% WSJ

% WSJ Reranker used? Parser f-score Reranking P. f-score

10 No 87.7 (+1.9) 88.7 (+1.7)

10 Yes 88.4 (+2.6) 89.0 (+2.0)



Performance

PCFG Parser
F:  89.9%
D: 100% WSJ

Reranking Parser
F:  91.5%
D: 100% WSJ

PCFG Parser
F:  85.8%
D: 10% WSJ

Reranking Parser
F:  87.0%
D: 10% WSJ

the hypothesis is false

% WSJ Reranker used? Parser f-score Reranking P. f-score

10 No 87.7 (+1.9) 88.7 (+1.7)

10 Yes 88.4 (+2.6) 89.0 (+2.0)



 What is a search error?

 Verification: investigate n-best lists

Parsing

• N-best generative 
Parser

Trees

• N-best parsed 
trees

Reranking

• discriminative 
reranker

Result

• parsed tree



 Let’s introduce some notations

Notation Description

O Parses from the original parser

S Parses from the ST parser

topS (X) Best parse determined by reranker from
the ST model on a given set X of trees

topO (X) Best parse determined by reranker from
the original model on a given set X of trees

eval[M] (X) Evaluates the model’s (M’s) f-score related
to the given set of trees



Search Errors

topS(S) ∉ O and topO(S ∪ O) = topS(S)

Expression Value

O ∩ S 66.0%

topS(S) = topO(O) 42.4%

topS(S) ∈ O 60.3%

Search Errors 2.5%



 F-score evaluation:

the hypothesis is true

Parser F-score

eval[O] (O) 91.5%

eval[O] (O ∪ S) 91.7%

eval[S]   (S) 92.0%



 2 classes of reranker features:
◦ GEN

 Features that are (roughly) captured by the parser

 CFG rule rewrites

 Head-child dependencies

◦ EDGE

 Features that are (not) captured by the parser

 Grammatical relations (also captured by the parser but..
uses combinations of labels as paths from one (non-)terminal node to 
another node)

 Functional dependencies between individual and grouped terminals

 Test setting: Θ = 1  & Φ = ~1 Million from NANC, Π = 0.1



 Evaluation of the test:

 when using the features not covered by the first 
stage (EDGE features) the performance increases

the hypothesis is true

Feature set # Number features F-score

GEN 448.000 90.4

EDGE 885.000 91.0

ALL ~1.3 million 91.3

Reranking Parser without ST / 90.5



 Revision:

VP [give]

VB

give

NP [example]

DET

an

NN

example

Bihead



 Let’s assume

◦ |Ω| is relatively small

◦ Φ is really large

 Obviously the training set contains an immense 
number of unknown (never seen before) words

 Vocabulary grows about 86-90% during a training step



 Verification: Factor Analysis
(PCA is a special case of Factor Analysis)



the hypothesis is true



 There is no complete explanation when and why
ST actually works!

Hypothesis Evaluation Conclusion

Phase transition Wrong High performance is not necessary for 
improvements

Reduced search errors True Responsible for some improvements

Reranker features True When using features not covered by the 
first parser stage this will lead to 

improvements

Bilexical Dependencies True Unknown Biheads are responsible for 
improvements



 When is Self-Training Effective for Parsing?

◦ David McClosky

◦ Eugene Charniak

◦ Mark Johnson

◦ Brown Laboratory for Linguistic Information Processing (BLLIP)


