Discourse Structure

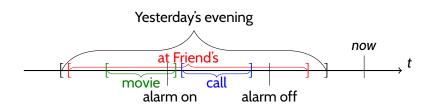
Antoine Venant

October 30, 2017

▶ By definition, a *sequence* of *distinct* linguistic acts.

- ▶ By definition, a *sequence* of *distinct* linguistic acts.
- These are not independent.

- By definition, a sequence of distinct linguistic acts.
- These are not independent.
- ▶ Their are related: linguistic acts *interract* with each other, their *effects* depend on this interraction.


- By definition, a sequence of distinct linguistic acts.
- These are not independent.
- Their are related: linguistic acts interract with each other, their effects depend on this interraction.
- Discourse structure describes these interractions.

- By definition, a sequence of distinct linguistic acts.
- These are not independent.
- Their are related: linguistic acts interract with each other, their effects depend on this interraction.
- Discourse structure describes these interractions.
- Is crucial for a wide range of tasks.

Example tasks

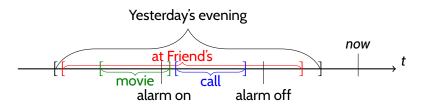
Retrieve temporal information.

- I was at my fiend's yesterday evening.
- We were watching a movie.
- The fire alarm suddently went on.
- We could switch it off only after a while.
- Because we had to call tech. support for instructions first.

Some challenges already.

Compositional challenges.

- The fire alarm went on. Something was burning in the kitchen.
- ▶ The fire alarm went on. We switched it off.
- Same first sentence
- No markers for temporal relations. lots of implicit information!
- Opposite temporal successions!


Syntactic clues not enough:

- The food burned slowly. The fire alarm was on.
- Food burned slowly. There was nothing left for us to eat .
- Same first sentence, same succession of tenses!

Structure guides interpretation.

Example:

- I was at my fiend's yesterday evening.
- We were watching a movie.
- ► The fire alarm suddently went on background
- It took us time to switch it off. / temp-sequence
- Because we had to call tech. support for instructions first.

Summarization:

Subordination/coordination:

- I was at my fiend's yesterday evening.
- We were watching a movie.
- The fire alarm suddently went on.
- It took us time to switch it off.
- Because we had to call tech. support for instructions first.
- temp-seq: coordinating, multinuclear relation.
- background, cause: subordinating, satellite nucleus, nucleus/satellite relations.
- for some relations, hierarchical ordering of arguments can vary to some extent.

Summarization:

Subordination/coordination:

- I was at my fiend's yesterday evening.
- The fire alarm suddently went on.
- It took us time to switch it off.

- temp-seq: coordinating, multinuclear relation.
- background, cause: subordinating, satellite nucleus, nucleus/satellite relations.
- for some relations, hierarchical ordering of arguments can vary to some extent.

6/15

Other example tasks:

Sentiment analysis

- This movie has somewhat predictible scenarios
- and some terrible dialogs.
- Nevertheless, I strongly recommend it for its terrific action scenes.

And much more

- Coreference resolution, event coreference, briding,....
- Discourse generation.
- Implicatures, commonsense reasoning.
- Presupositions, attitude reports.

Agreements and disagreements

Inter-theoretical agreements.

- Discourse consists in a sequence of elementary discourse units (EDUs)
- Linked together by mean of discourse relations.
- Relations induce hierarchy on their arguments.
- Units linked together with other units form compounds (complex discourse units, (CDUs)).

Inter-theoretical disagreements

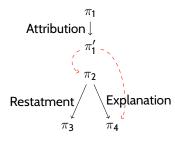
- Exact nature of discourse units.
- Nature, classification and grain of relations. Though correspondence and translation tables have been proposed.
- Interpretation of the structure.

Elementary discourse units

Finite clause

A clause with a finite verb, that is, a verb with a subject and tense information. Can stand alone as an independence sentence.

- [We were watching a movie.] [The alarm went on.]
- General agreement that finite clause make elementary discourse units.
- Some exceptions varying with theories.
- Segmentation granularity ultimately driven by need to target specific units by relations while leaving other out.


Non-finite clauses

- ▶ Infinitive complements: [May told me] [to come early this morning.]
- ► Parenthetics: [Guy Hosneld, [55 years old], was ...] Note: recusive units!
- ► Detached adverbials': [For two decases,] [he worked at the library.]

Segmented discourse representation theory

- A theory driven by semantics: structure has a model theoretic interpretation.
- e.g., Elaboration(α, β) \vdash $\mathbf{e}_{\alpha} \subseteq \mathbf{e}_{\beta}$.
- Directed acyclic graphs with complex discourse units.
- ▶ Subordinating (NS) and coordinating (NN) relations.

[Interprovincial Pipe Line Co. said] $_{\pi_1}$ [it will delay a proposed two-step, 830 million dollar [(US\$ 705 million)] $_{\pi_3}$ expansion of its system] $_{\pi_2}$ [because Canada's output of crude oil is shrinking.] $_{\pi_4}$

Graph representation

directed acyclic graph where each DU is a vertex and

Directed labelled edges for rhetorical relations.

Pro and cons

- Workable representation of meaning.
- Many successful contributions in formal linguistics.
- Straightforward interpretation of the structure: What you see is what you get.
- Rather unconstrained complex discourse units:
- Accurate semantic representation at the cost of huge search space for parsing!

Rhetorical Structure Theory

- Bottom up construction of a tree by recursive identification and application of schemas.
- Most common schemas: Nucleus-Satellite e.g. Explanation(a_N , b_S), Satellite-nucleus, nucleus-nucleus (Sequence(a_N , b_N)).
- ► Handful of *n*-ary schemas: *n*-ary *lists* with nuclei only, pair of SN-NS relations with common central nucleus.
- In most approaches, n-ary structures are binarized (with right-branching strategies) in preprocessing, and assumed as such for parsing and evaluation.
- Constraints on the respective communicative function of Nucleus,
 Satellite, and NS combination must be checked.

12 / 15

Illustration

Example

[Interprovincial Pipe Line Co. said] $_{\pi_1}$ [it will delay a proposed two-step, 830 million dollar [(US\$ 705.6 million)] $_{\pi_3}$ expansion of its system] $_{\pi_2}$ [because Canada's output of crude oil is shrinking.] $_{\pi_4}$

Semantic Scopes

Wysiwyg interpretation:

- ► $[R(t_1, t_2)] = [R]([t_1], t_2])$ Restatement $(\pi_2, \pi_3) \land$
- Explanation($[\pi_2, \pi_3], \pi_4$) \land Attribution($\pi_1, [\pi_2, \pi_3, \pi_4]$).

Attribution n s \pi_1 Explanation n s Restatement 4 n s

Nuclearity Principle:

- NS nodes only pass on their nuclei to a parent relation.
 - Restatement $(\pi_2, \pi_3) \land$
- Explanation $(\pi_2, \pi_4) \land$ Attribution (π_1, π_2) .

RST-Pros and cons

- Tree structures, projective structures.
- More constrained restricted search space.
- More data!
- Successful parsing algorithms.
- Interpretation of the structure not cristal clear.
- Somewhere between syntax and semantics.

A third possibility: dependency structures

Get rid of complex units in SDRT graphs. Impose projectivity, or relax it. Adapt dependency algorithms to discourse.

RST	SDRT	Discourse DAG
attribution		
n s	π_1	π_1
π, explication	attribution	
π_1 explication	π_1'	attribution
n s	π_2	$\stackrel{\downarrow}{\pi_2}$
restatement π_4	explication	explication
n s	restatment	restatment
π_2 π_3	π_3 π_4	π_3 π_4
NP:	Immediatly:	Immediatly:
$attr(\pi_1,\pi_2)$	$\operatorname{attr}(\pi_1, [\pi_2, \pi_3, \pi_4])$	$[\pi_4]$)attr (π_1,π_2)
$rest(\pi_2,\pi_3)$	$rest(\pi_{2},\pi_{3})$	$rest(\pi_{2},\pi_{3})$
$expl(\pi_2,\pi_4)$	$expl(\pi_{2},\pi_{4})$	$expl(\pi_2,\pi_4)$