Constrained decoding for text-level discourse parsing by Muller, Afantenos, Denis, Asher

Max Depenbrock

Project Seminar "Discourse Parsing"

13.11.2017

Table of Contents

Introduction

2 Corpus

- 3 Local Models
- Parsing Experiments
 - Baselines
 - A*
 - Chu-Liu-Edmonds-Algorithm

5 Results

Conclusion

Introduction

Main Points of the Paper

- Discourse structure on text-level
- Informed search

• Generating discourse structures with respect to constraints

Text-level discourse structure prediction

Most work so far

- Relation labeling only between 2 DUs
- Structure prediction only at sentence level

Informed search

Last week

- HILDA: Greedy DFS
- Solution might not be optimal

In this paper

- Informed search: A*
- Guaranteed to find optimal solution...
- ...given a good heuristic

Informed search (cont'd)

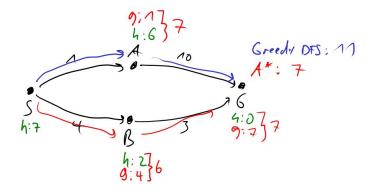


Figure: Greedy search vs. informed search

The A* Algorithm

```
\begin{array}{c|c} \textbf{Input: Initial state } S_0 \\ \textbf{queue} \leftarrow \{S_0\}; \\ \textbf{while } queue is not empty \ \textbf{do} \\ & \quad \text{current} \leftarrow \text{removeBest}(\textbf{queue}); \\ \textbf{if } current & \quad \text{is solution then} \\ & \quad \text{return } current \\ & \quad \textbf{else} \\ & \quad \text{newStates} \leftarrow \text{generate}(\text{current}); \\ & \quad \text{queue} = \text{queue} \cup \text{newStates} \\ & \quad \textbf{end} \end{array}
```

end

Algorithm 1: Structure of A*

Constraints

Right Frontier Constraint (RFC)

- New DUs can only be attached to
 - the current node
 - nodes which the current node is subordinated to
- Difficult to integrate in current solutions
- A* makes integration easy

Constraints (cont'd)

S: subordinating C: coordinating

- A John bought a new Toyota. A <u>(</u>) B He wanted to try a hybrid engine. J^S (Then he bought an appartment. B
 - A John bought a new Toyota. A C>B B. Then he bought an appartment. ((He wanted to try a hybrid engine.

Figure: Illustration of RFC

Corpus

Available Corpora

PTDB

- Very simple structure
- only adjacent DUs

RST-DT

• Recursive but enforcing adjacency

DISCOR / ANNODIS

- SDRT
- directed, acyclic graphs, imposing RFC

GraphBank

general graphs

Max Depenbrock

A closer look at ANNODIS

- Created in 2012
- French news and Wikipedia articles
- Annotated in SDRT

Statistics

- 18 types of relations
- 86 texts
- 3188 EDUs
- 1395 CDUs
- 3355 relations

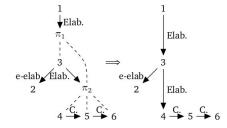
From SDRT to dependency graphs

SDRT is too complex.

Idea

- Collapse CDUs
- Replace them by their recursive heads
- Recursive head: highest DU in subgraph
- If that is a CDU: recursion

[Principes de la sélection naturelle.] 1 [La théorie de la sélection naturelle [telle qu'elle a été initialement décrite par Charles Darwin,] 2 repose sur trois principes:] 3 [1. le principe de variation] 4 [2. le principe d'adaptation] 5 [3. le principe d'hérédité] 6



Local Models

The basic Idea

2 locally trained probabilistic classifiers

- one to predict attachment site
- one to predict discourse relation for attached pairs

2 different training models

- Naive Bayes
- Logistic Regression / MaxEnt

The 2 classifiers will be combined during decoding phase

Features (selection)

attachment and labeling

- First EDU of the paragraph / sentence?
- number of tokens in EDU
- number of EDUs between source and target
- source embedded in target? (and vice versa)

attachment

- presence of discourse marker
- embedded in other EDU?

labeling

- presence of verb
- presence of negation
- tense agreement between head verbs of source / target

Evaluation

2 sets of relations

- 18 relations (full set)
- 4 relation groups (coarse grain)

2 windows for relations to be attached

- all relations (full)
- relations with distance 5 (w5)

Evaluation (cont'd)

	MaxEnt	NB	Majority			
w5 (18 relations)	44.8	34.7	19.1		MaxEnt	NB
full (18 relations)	43.3	32.9	19.7	w5	67.4	61.1
w5 (4 relations)	65.5	62.1	51.2	full	63.5	51.3
full (4 relations)	63.6	60.1	50.1	a		

Figure: labeling (accuracy, left) and attachment (F1 score, right)

- MaxEnt best model for both cases
- resampling increases performance

Parsing Experiments

Parsing Experiments

Baselines

Baselines

Last

• Always attach current DU to previous one

Greedy

- Local greedy approach
- For all pairs of adjacent DUs select the one with highest prob.

A*

Cost of Edges

$$cost((u, v)) = -\log(P(attach(u, v) = True) \cdot \arg\max_{R} P(R|attach(u, v) = True))$$

- vertices u, v, relation R
- -log() to convert probabilities into costs
- A* needs positive weights
- taking attachment and labeling decisions jointly

Cost of Edges (cont'd)

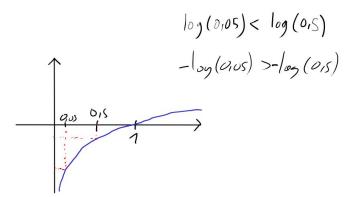


Figure: Converting probabilities to costs

Heuristic

h_best

• best cost of attaching current unit to some unit already attached

h_avg

- high variance in costs
- average of attachments to every remaining node
- potentially not admissible

h_avg was chosen due to performance reasons

Node generation / Constraints

State S consisting of $\langle V, E, RF \rangle$

- V: List of DUs to be attached
- E: Set of edges
- RF: List of accesible nodes according to RFC

return resultlist

Chu-Liu-Edmonds-Algorithm

Chu-Liu-Edmonds Algorithm (CLE)

- replacement of CDUs with recursive heads similar to *non-projective trees with directed arcs*
- suitable for *Maximum Spanning Tree* Approach (MST, c.f. McDonald et al (2005))
- MST: Tree with maximum edge scores
- CLE generates MSTs from complete graphs
- Idea: Calculate attachment / labeling probabilities with NB / MaxEnt; then use CLE
- Difficult to impose constraints

Results

Unlabeled structures

Training model	Naive Bayes			Maxent			Ø
Decoding method	greedy	MST	A*	greedy	MST	A*	Last
attachment alone (w5)	61.2	65.7	66.2	62.1	65.7	65.7	62.4
attachment alone	58.5	62.0	62.1	62.2	65.7	65.7	62.4
joint/unlabelled (w5)	59.7	61.7	64.8	62.2	65.1	65.3	62.4
joint/unlabelled	57.9	57.0	59.6	62.3	65.1	65.4	62.4

Figure: F1 Scores for unlabeled structures

- A* and MST differ from all other methods
- predicting relations does not improve attachment

Complete, labeled structures

Training model Decoding method		Naive Bayes			Maxent			
		greedy	MST	A*	greedy	last	MST	A*
joint(w5)	4 rels	38.9	29.3	41.7	42.2	42.2	31.6	44.1
joint	4 rels	38.7	26.7	39.6	44.6	44.5	30.0	46.8
pipe-line(w	5) 4 rels	39.5	42.1	42.5	42.1	42.2	44.3	44.3
pipe-line	4 rels	38.7	40.8	40.8	44.5	44.5	46.8	46.8
joint(w5)	18 rels	22.0	8.2	23.7	28.7	28.6	4.8	30.1
joint	18 rels	23.4	4.1	24.0	34.2	34.1	5.4	36.1
pipe-line(w	5)18 rels	22.5	24.0	24.5	28.7	28.6	30.2	30.2
pipe-line	18 rels	23.9	24.7	24.8	34.0	34.1	36.1	36.1

Figure: F1 Scores for labeled structures

- A* and MST are still best methods
- pipe-lining performs better than joint-encoding
- \bullet pruning (w5) does not lead to significant improvement

Conclusion

Conclusion

Conclusions

- Comparable to similar approaches
 - labeled: 30-40%
 - unlabeled: 60-70%
- Global encoding improvments are significant over baselines
- Predictions respect the desired properties of discourse structures

Sources

- Muller, P., Afantenos, S., Denis, P., & Asher, N. (2012). Constrained decoding for text-level discourse parsing. Proceedings of COLING, 3(December 2012), 1883–1900.
- McDonald, R., Pereira, F., Ribarov, K., & Hajič, J. (2005). Non-projective dependency parsing using spanning tree algorithms. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing - HLT '05 (pp. 523–530). Morristown, NJ, USA: Association for Computational Linguistics.