

Measuring Distribution Similarity in Context

[Dinu & Lapata 2010]

Computational Semantics Seminar: Summer 2012

Boris Kozlov

29 May 2012

boris.linguist@gmail.com

Outline

- Vector-based models
 - standard approach
 - distribution similarity with latent senses
- Latent Semantic Analysis
 - observation data explained by hidden structure: Hoffman[1989]
 - latent semantic classes
- Parametrizations
 - PLSA
 - NMF
 - . LDA
- Evaluations and conclusions

Vector-based models: standard

- Distributional models of meaning = vector-based models
 - Firth (1957): "You shall know a word by a company it keeps!"
- Term-content matrix:

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	1	0	1
pineapple	0	0	0	1	0	1
digital	0	2	1	0	1	0
information	0	1	6	0	4	0

word meaning is defined by a vector of context words

Cosine for computing similarity

$$\cos(\mathbf{v},\mathbf{w})\frac{\overline{v}*\overline{w}}{|\overline{v}||\overline{w}|}$$

Vector based models melt all meanings of a word into one vector:

- big: "My bigger sister..."
 - (a) size
 - (b) age

Latent class model:

• explains the structure of the observation data

Data:

co-occurrence matrix of target words and context features

Hoffman [1989]: finite set of aspects $A = \{a_1 \dots a_k\}$ each observation is assigned a class a_i Observation data:

 $\mathbf{P}(x, y) = \sum_{a} P(x, y, a)$

x and y are independent:

 $\mathbf{P}(x, y) = \sum_{a} P(x) P(a|x) P(y|a)$

MLE: choose a structure that maximizes P(x,y)

Assume :

 $Z = \{z_1 \dots z_k\}$ [latent semantic senses]

Substituting this

 $\mathbf{P}(x, y) = \sum_{a} P(x) P(a|x) P(y|a)$

the same but with linguistic observation data:

$$\mathbf{P}(t_i, c_j) = \sum_k P(t_i) P(z_k | t_i) P(c_j | z_k)$$

MLE: choose a structure that maximizes P(x,y)

Meaning of a word as a distribution over the latent senses

$$v(t_i) = (P(z_1|t_i), \dots, P(z_k|t_i))$$

Representation for a target word t_i with a context feature c_j

$$v(t_i, c_j) = \left(P(z_1 | t_i, c_j), \dots, P(z_k | t_i, c_j) \right)$$

Where did latent senses come from??

Models for latent meaning induction

Different probabilistic models for induction of latent senses:

- Probabilistic Principal Components Analysis: Tipping and Bishop [1999]
- Probabilistic latent semantic analysis: Hofmann [2001]
- Non-negative Matrix Factorization: Lee and Seug [2000]
- . Latent Dirichlet Allocation: Blei [2003]

The latter two are used in the paper

PLSA

Model:

or:

$S = D \ x \ W$	 observation data
$D = \{d_1 \dots d_I\}$	- set of document labels
$\mathbf{W} = \{w_1 \dots w_J\}$	- set of words

 $\mathbf{d} = \{w_{d1} \dots w_{dN}\} - \text{document as words in it}$

It is assumed that data is generated by the random sampling process:

- Select a document with a probability P(d)
- For each word position dn in a document d:
 - Generate a latent topic z with probability $P(z_{dn}|d)$
 - ^{2.} Generate a word w with a probability $P(w_{dn}|z_{dn})$

Two assumptions here:

- the pairs (d,w) are generated independently
- 2. Words and document are conditionally independent given a latent topic

 $\mathbf{P}(\mathbf{w}|\mathbf{z},\mathbf{d}) = P(w|z)$

PLSA

Under the independence assumption of (d,w)

$$P(\mathcal{S}) = \prod_{d} \prod_{dn=d1}^{dN} P(d, w_{dn}) = \prod_{d} \prod_{dn=d1}^{dN} \sum_{k=1}^{K} P(d, w_{dn}, z_k)$$

the goal: reveal the underlying structure that maximizes P(S)

Under the independence assumption of P(w|z,d) = P(w|z)

$$P(d,w) = \sum_{z} P(d,w,z) = P(d) \sum_{z} P(z|d)P(w|z)$$
 asymmetric (defined already)
$$P(d,w) = \sum_{z} P(d,w,z) = \sum_{z} P(z)P(d|z)P(w|z)$$
 symmetric

Non-negative Matrix Factorization (Lee & Seung [2000])

Main idea: find non-negative matrices W and H

$$V_{I,J} \approx W_{I,K} H_{K,J}$$

Where:

$$V_{i,j} = P(t_i, c_j) \quad W_{i,k} = P(t_i, z_k) \quad H_{k,j} = P(c_j | z_k)$$

Cost Function
$$J_{NMF-KL}(V||WH) = \sum_{i,j} V_{ij} \log \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij}$$

find W and H which minimize the whole equation constraint: $W, H \ge \mathbf{0}$

Symmetric parametrization: $P(d, w) = \sum_k P(d|z_k)P(z_k)P(w|z_k)$

- ^{1.} Create diagonal matrix B where $B_{kk} = \sum_{j} H_{kj}$
- ^{2.} Create diagonal matrix A where $A_{kk} = \sum_i W_{ki}$

$$WH = (WA)(A^{-1}B)(B^{-1}H)$$

$$\begin{array}{lll} WA & (I \times K) & P(d|z) & \sum_i P(d_i|z) = 1 \\ A^{-1}B & (K \times K) & P(z) & \sum_k P(z_k) = 1 \\ B^{-1}H & (K \times J) & P(w|z) & \sum_j P(w_j|z) = 1 \end{array}$$

Asymmetric parametrization $P(\mathbf{d}, \mathbf{w}) = \sum_{k} P(d) P(z_k | d) P(w | z_k)$

- 1. Create diagonal matrix B where $B_{kk} = \sum_{j} H_{kj}$
- ^{2.} Create diagonal matrix A where $A_{ii} = \sum_{k} (WB)_{ik}$

$$MH = (A)(A^{-1}WB)(B^{-1}H)$$

$$\begin{array}{lll} A & (I \times I) & P(d) & \sum_i P(d_i) = 1 \\ A^{-1}WB & (I \times K) & P(z|d) & \sum_k P(z_k|d) = 1 \\ B^{-1}H & (K \times J) & P(w|z) & \sum_j P(w_j|z) = 1 \end{array}$$

Asymmetric parametrization: inducing latent meaning

Representation for a target word t_i with a context feature c_i

$$v(t_i, c_j) = \left(P(z_1 | t_i, c_j), \dots, P(z_k | t_i, c_j) \right)$$

 $P(z_k|t_i, c_j)$ can be obtained as:

$$P(z_k|t_i, c_j) = \frac{P(t_i, z_k)P(c_j|z_k, t_i)}{\sum_k P(t_i, z_k)P(c_j|z_k, t_i)}$$

By assumption that t_i and c_j are independent: $P(c_j|z_k, t_i) = P(c_j|z_k)$

$$P(z_k|t_i, c_j) = \frac{P(z_k|t_i)P(c_j|z_k)}{\sum_k P(z_k|t_i)P(c_j|z_k)} = \frac{(A^{-1}WB)_{ik}(B^{-1}H)_{kj}}{\sum_k (A^{-1}WB)_{ik}(B^{-1}H)_{kj}}$$

LDA: obtain data from a generative probabilistic process.

- for documents: hidden topic
- for words: hidden meaning
- put new data into the process: how does the document fits into the model.

Intuition: documents contain information about multiple topics.

The Dirichlet distribution is a K-dimensional distribution $K \ge 2$ with parameters $a = (a_1 \dots a_k), a_1 \dots a_k > 0$ with density function $f(x_1, \dots, x_K; \alpha_1, \dots, \alpha_K) = \frac{1}{B(\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1}$

where B(a) is a normalizing constant

 $B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\prod_{i=1}^{K} \alpha_i)}$

parameters control mean and variance of X

$$E[X_i] = \frac{\alpha_i}{\sum_{i=1}^K \alpha_k}$$
$$Var[X_i] = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$$

Latent Senses: Dirichlet Distribution

Latent Senses: Dirichlet Distribution

Assume: there are number of topics that exist outside of text data.

- each topic is a distribution over vocabulary:
- each document is a mixture of topics
- each word is taken from one of the topics

Latent senses: LDA

 β – distribution over terms of vocabulary (k of them)

 Θ_d – topic proportions, one for each document

 Z_{dn} – topic assignment for each word

Each piece of the structure is a random variable.

Generative model for each document:

- generate a distribution over topics Θ^d : Dirichlet(a)
- . for each word *dn* in document *d* :
 - a. generate a latent topic z_{dn} with probability $P(z_{dn}|\Theta^d)$
 - b. generate a distribution over words $\phi^{z_{dn}}$: $Dirichlet(\beta)$
 - c. generate a word w_{dn} with probability $P(w_{dn}|\phi^{z_{dn}})$

The joint probability of a document collection:

$$P(\mathcal{S}, \boldsymbol{\theta}, \boldsymbol{\phi} | \boldsymbol{\alpha}, \boldsymbol{\beta}) = \prod_{d} P(\boldsymbol{\theta}^{d} | \boldsymbol{\alpha}) \prod_{dn=d1}^{dN} P(z_{dn} | \boldsymbol{\theta}^{d}) P(\boldsymbol{\phi}^{z_{dn}} | \boldsymbol{\beta}) P(w_{dn} | \boldsymbol{\phi}^{z_{dn}})$$

Computing meaning representation:

$$P(z_k|t_i) = \theta_i^k \qquad P(z_k|t_i, c_j) = \frac{P(z_k|t_i)P(c_j|z_k)}{\sum_k P(z_k|t_i)P(c_j|z_k)} = \frac{\theta_i^k \phi_j^k}{\sum_k \theta_i^k \phi_j^k}$$

Experiments and Evaluation

Experiments:

1. word-similarity task

2. lexical substitution task

Measure similarity by

scalar product:

$$sp(v,w) = \langle v,w \rangle = \sum_i v_i w_i$$

cosine:

$$\cos(v, w) = \frac{\langle v, w \rangle}{||v||||w||}$$

inverse Jensen-Shannon divergence:

$$JS(v,w) = \frac{1}{2}KL(v|m) + \frac{1}{2}KL(w|m) \qquad \mathbf{m} = \frac{1}{2}(v+w)$$
$$KL(v|m) = \sum_{i} v_{i} \log(\frac{v_{i}}{w_{i}}) \qquad IJS(v,w) = \frac{1}{JS(v,w)}$$

Task: judging similarity of two words out of context.

Evaluation: Spearman's p between similarity values from the modes and mean rating done by human participants. SVS as baseline

NMF: k =1000

LDA: k = 1200 $a = \frac{50}{k}$

NMF & LDA performs significantly better

(*p* < **0.01)** than LSA and SVS

Model	Spearman ρ		
SVS	38.35		
LSA	49.43		
NMF	52.99		
LDA	53.39		
LSA _{MIX}	49.76		
NMF _{MIX}	51.62		
LDA_{MIX}	51.97		

Table 2: Results on out of context word similarity using a simple co-occurrence based vector space model (SVS), latent semantic analysis, non-negative matrix factorization and latent Dirichlet allocation as individual models with the best parameter setting (LSA, NMF, LDA) and as mixtures (LSA_{MIX}, NMF_{MIX}, LDA_{MIX}).

Task: contextualized lexical substitutions.

Evaluation: Kendall's T rank correlation. SVS as baseline.

All models performs significantly better

(*p* < **0.01)** than SVS

Model	Kendall's τ_b		
SVS	11.05		
Add-SVS	12.74		
Add-NMF	12.85		
Add-LDA	12.33		
Mult-SVS	14.41		
Mult-NMF	13.20		
Mult-LDA	12.90		
Cont-NMF	14.95		
Cont-LDA	13.71		
Cont-NMF _{MIX}	16.01		
Cont-LDA _{MIX}	15.53		

Table 3: Results on lexical substitution using a simple semantic space model (SVS), additive and multiplicative compositional models with vector representations based on co-occurrences (Add-SVS, Mult-SVS), NMF (Add-NMF, Mult-NMF), and LDA (Add-LDA, Mult-LDA) and contextualized models based on NMF and LDA with the best parameter setting (Cont-NMF, Cont-LDA) and as mixtures (Cont-NMF_{MIX}, Cont-LDA_{MIX}).

Experiments and Evaluations

Evaluation:

Results of lexical substitutions for different parts of speech:

Model	Adv	Adj	Noun	Verb
SVS	22.47	14.38	09.52	7.98
Add-SVS	22.79	14.56	11.59	10.00
Mult-SVS	22.85	16.37	13.59	11.60
Cont-NMF _{MIX}	26.13	17.10	15.16	14.18
Cont-LDA _{MIX}	21.21	16.00	16.31	13.67

Table 4: Results on lexical substitution for different parts of speech with a simple semantic space model (SVS), two compositional models (Add-SVS, Mult-SVS), and contextualized mixture models with NMF and LDA (Cont-NMF_{MIX}, Cont-LDA_{MIX}), using Kendall's τ_b correlation coefficient.

Paper proposes a solution to unsupervised context-sensitive word disambiguation.

<u>Main idea</u>: represent words out or in context as a probability distribution over set of induced latent senses.

Proposed methods include usage of NMF and LDA method for latent senses induction

Georgiana Dinu & Mirella Lapata. 2010. Measuring Distributional Similarity in Context. In *Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1162–1172*

Georgiana Dinu. 2011. Word meaning in context: A probabilistic model and its application to Question Answering. PhD thesis.

Wikipedia. 20 May 2012. Dirichlet Distributions. http://en.wikipedia.org/wiki/Dirichlet_distribution