THE IMPORTANCE OF
SYNTACTIC PARSING AND

INFERENCE IN SEMANTIC
ROLE LABELING

(PUNYAKANOK ET AL. 2008)



Outline

SRL system architecture
Pruning
Argument identification
Argument classification
Inference

What is Integer Linear Programming (ILP)?

Importance of Syntactic Parsing

full syntactic parsing
shallow syntactic parsing

Conclusion



- SRL System Architecture



e
NP VP
——
VP
VP
[T
PP
e
NP
e
NP S
[
WHNP VP
e

VP
VP
[\Np
e
PRPS NNS MD VB VBN IN NNP NNP WP VBZ VBN VBN NN NN
His duties will be assumed by John Smith who has been elected deputy chairman

Clauses:

Chunks:
NP VP PP NP NP VP NP
Predicate-Argument Structure:
assume
A1 AM-MOD " A0

elect

Al R-A1 Y] A2



Two-step design

1) System is trained to identify argument
candidates for a given verb predicate

2) Argument candidates are classified into their

types
Additional steps:
Pruning of obvious non-candidates before step 1

Use post-processing inference to fix inconsistent
predictions after step 2

System uses PropBank Annotation Scheme



Pruning step

filter out simple constituents that are unlikely to
be arguments

recursive process starting from the target verb
returns siblings of verb as candidates

then it moves to parent of the verb and collects
siblings again

process continues until it reaches the root

exploits heuristic rules introduced by Xue and
Palmer (2004)



Argument identification step

binary classification

full syntactic parsing:
train and apply classifiers on constituents supplied by
pruning stage

shallow syntactic parsing:

no pruning stage —> consider all possible
subsequences (i.e. consecutive words) as potential
candidates

two classifiers: One to predict beginnings of a
potential candidate, the second to predict the ends

predictions are combined



Features of classifier

same features as in Gildea & Jurafsky (2002)

some additional features which are especially
useful for systems without full parse tree
information, for example:

two word before and after constituent, together with
their POS tags

length of constituent, measured in words and chunks

chunk pattern: encodes sequence of chunks from
constituent to predicate

chunk pattern length: counts number of chunks in
chunk pattern feature



Argument classification step

multi-class classifier used to predict semantic types
or label argument as null to discard it

same features as in identification step

for details of the classifier see (Roth 1998) and
(Carlson et al. 1999)



Inference step

previous decisions were made for each argument
independently, ignoring global information across
arguments

purpose: incorporate such information here,
including linguistic and structural knowledge, e.g.:
arguments do not overlap
each verb takes at most one argument of each type

- useful to resolve inconsistencies of argument
classification



Inference step

process of finding the best valid semantic labels
which satisfy certain constraints

input: the argument classifier’s confidence scores
for each type of argument, along with a list of
constraints

output: optimal solution that maximizes linear
sum of confidence scores, subject to constraints

that encode domain knowledge
accomplished through integer linear programming



Constraints over Argument Labeling

SEM:. set of arguments, indexed from 1 to M
PM: set of labels

the indexed set of arguments can take a set of
labels cI'M & pM

classifiers return score(S' = ¢/)

- likelihood of argument S’ being labeled ¢/, given
a sentence

goal: maximize the overall score of arguments



M
&M = argmax E score(S' = )
Cl:MEJ:'(pM) il

find the set of labels for which the sum of the scores of each argument is
maximized

can be thought of as if the solution space is limited through a filter function F
which eliminates many labelings from consideration



M
&M = argmax E score(S' = )
AMeF(PM) j—1

the filter function uses several constraints, e.g.:
arguments cannot overlap with the predicate

if a predicate is outside a clause, its arguments cannot be embedded in that
clause



M
&M = argmax E score(S' = )
AMeF(PM) j—1

problem: computation takes a very long time, but can be optimized by using an
integer linear programming resolver



Integer Linear Programming



What is ILP?

ILP is a special case of linear programming
also called linear optimization

mathematical method for achieving the best
outcome in a mathematical model for some list of
requirements represented as linear relationships

- maximize an objective function depending on
linear (in)equality constraints

if unknown variables are all required to be
integers, then the task is called ILP



X2 inequality
ax<=b

vector c defines

* direction of

optimization

feasible region

set {x | ax = b}: all points x which satisfy ax=b (a and b are constants)
all these points define a hyperplane in n-dimensional space
all points which satisfy ax <= b lie on one side of this hyperplane

each constraint divides the space into two parts; points on one side are feasible,
those on the other side are not



X2 inequality
ax<=b

vector c defines

* direction of

optimization

feasible region

the set of all points which lie in their respective feasible region of the space
build a convex polytope



a polytope is a closed solid geometric object with flat sides, which exists in
any general number of dimensions

2-polytopes are called polygons

3-polytopes are called polyhedrons



an object is convex if for every pair of points x and y within the object, every
point on the straight line, which connects x and vy, is also within the object



X2 inequality
ax<=b

vector c defines

* direction of

optimization

feasible region

the set of all points which lie in their respective feasible region of the space build a convex
polytope

the red vector c is the objective function c: x -> c"x that shall be maximized (standard form)

this corresponds to finding the point in the polytope that maximizes the scalar product of
vector ¢ and the hyperplane with the condition {x | c"™x=0} (the straight red line)



X2 inequality
ax<=b

vector c defines

* direction of

optimization

feasible region

shift this hyperplane in the direction of vector c as far as possible without leaving
the polytope

i.e. the point X, Maximizes the objective function c considering the linear
constraints and thus is the only optimal solution to the given problem

in this case only one point matches, but it can also be a set of points in general



M
&M = argmax E score(S' = )
Cl:MEJ:'(pM) il



M
argmax ) . ) _ Picltic

Ujc S {0/1 } VZE [1/M]/CEP 1—1 CEP

subjectto  » =1 Vie[1,M]
ST

the original function is reformulated as a linear function over several binary
variables u,. and the filter function F is represented using linear (in)equalities



M
argmax ) . ) _ Picltic

Uic € {0/1 } VIS [1/M]/CEP i—=1 cepP

subjectto  » =1 Vie[1,M]
ceEP

u,. =[S = c] (indicator variable that represents whether or not the argument
type c is assigned to §')

p,. = score(S' = c) (the probability of argument §' to be of type c)

the constraint means that each argument can take only one type



ILP applied to Semantic Role Labeling

previous approaches rely on dynamic
programming to resolve non-overlapping /
embedding constraints

but they are not able to handle more expressive
constraints which take, e.g., long-distance
dependencies into account



- Full vs. Shallow Syntactic Parsing



Full vs. Shallow Syntactic Parsing

PropBank sections 02-21 used as training data,
section 23 used for testing

goal: understand the effective contribution of full
versus shallow parsing information (i.e. using only
POS tags, chunks and clauses)

comparison of performance when using the
correct (gold-standard) data versus automatic
parse data

performance is measured in terms of precision,
recall and F; measure



Full vs. Shallow Syntactic Parsing

automatic full parse
trees are derived

using Charniak’s
parser (2001)

different components
are used:

POS tagger (Even-
Zohar & Roth 2001)

Chunker (Punyakanok
& Roth 2001)

Clauser (Carreras et al.
2005)



The overall system performance when argument boundaries are known.

Full Parsing Shallow Parsing

Prec Rec F, Prec Rec F,

Gold 9158 9190 91.744+0.51 91.14 9148 91.31+0.51
Auto 9071 91.14 9093 +0.53 9050 90.88 90.69 + 0.53

for testing, it is assumed that the argument boundaries are known

difference between systems lies in features that are used (in the shallow
system, most features can be approximated using chunks and clauses)



The performance of argument identification after pruning (based on the gold standard full parse
trees).

Full Parsing Shallow Parsing

Prec Rec F, Prec Rec F,

Gold 96.53 93.57 95.03+0.32 93.66 91.72 92.68 + 0.38
Auto 94.68 90.60 92594039 9231 88.36 90.29 1+0.43

the candidate list used here is the output of the pruning heuristic applied on
the gold-standard parse trees

difference between systems lies only in the construction of some features



The overall system performance.

Full Parsing Shallow Parsing

Prec Rec F, Prec Rec F,

Gold 86.22 8740 86.81 +0.59 7534 7528 75.31+0.76
Auto 77.09 7551 7629 4+0.76 7548 67.13 71.06 + 0.80

the main contribution of full parsing is the pruning stage
internal tree structure significantly helps in discriminating argument candidates

the shallow parsing system does not have enough information for the pruning
heuristics, thus two word-based classifiers are trained instead (one to predict the
beginning of an argument, the second to predict the end)



The impact of removing most constraints in overall system performance.

Full Parsing Shallow Parsing

Prec Rec F, Prec Rec F,

Gold 85.07 8750 86.27+0.58 73.19 75.63 74.39 +0.75
Auto 75.88 75.81 7584 4+0.75 7356 6745 70.37 £ 0.80

removing most linear constraints has a visible impact on performance



Conclusion

the pruning step and the ILP-based inference
procedure have the greatest impact on the overall
system performance

by means of these features a high-performant SRL
system can be built

shallow syntactic parsing yields already very good
results, full syntactic parsing is most relevant in
pruning and argument identification



Merci !




References

Carlson, Andrew J.; Cumby, Chad M.; Rosen, Jeff L.; Roth, Dan (1999): The SNoW learning
architecture. Technical Report UIUCDCS-R-99-2001, UIUC Computer Science Department.

Carreras, Xavier; Marquez, Lltis (2005): Introduction to the CoNLL-2005 shared task:
Semantic Role Labeling. In: Proceedings of the Ninth Conference on Computational Natural
Language Learning, p. 152-164, Ann Arbor, MI.

Charniak, Eugene (2001): Immediate-head parsing for language models. In: Proceddings of
the 39th Annual Meeting of the ACL, p. 116-123, Toulouse, France.

Even-Zohar, Yair; Roth, Dan (2001): A sequential model for multi-class classification. In:
Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing
(EMNLP-2001), p. 10-19, Pittsburgh, PA.

Gildea, Daniel; Jurafsky, Daniel (2002): Automatic Labeling of Semantic Roles. Computational
Linguistics, 28(3):245-288.

Punyakanok, Vasin; Roth, Dan; Yih, Wen-tau; Zimak, Dav (2004): Semantic role labeling via
integer linear programming inference. In: Proceedings of the 20th International Conference
on Computational Linguistics (COLING), p. 1346-1352, Geneva, Switzerland.

Roth, Dan (1998): Learning to resolve natural language ambiguities: A unified approach. In:
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), p. 806-813,
Madison, WI.

Xue, Nianwen; Palmer, Martha (2004): Calibrating features for semantic role labeling. In:
Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing
(EMNLP-2004), p. 88-94, Barcelona, Spain.



