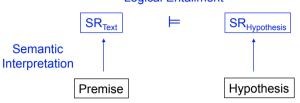
The Logical Paradigm

Seminar


Recent Developments in Computational Semantics

Introduction 1

Manfred Pinkal Saarland University Summer 2011

Logical Entailment

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University

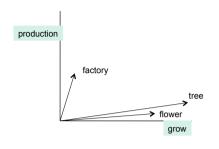
Statistical Semantics

- Word-Sense Disambiguation
- Semantic Similarity
- Acquisition of Semantic Resources
 - Paraphrases
 - Inference Patterns
 - Script Information
- · Semantic Role Labeling
- Statistical Models and Compositionality

Word-Sense Disambiguation

- Word-Sense Disambiguation
 - Selectional Constraints vs. Selectional Preferences
 - Supervised/ Semi-supervised/Unsupervised
- Topics for Seminar Talks:
 - Semi-supervised WSD: Yarowsky 1995
 - Using Selectional Preferences for WSD: McCarthy&Carroll 2003
 - Unsupervised word-sense discrimination: Schütze 1998

Semantic Similarity


Semantic Similarity

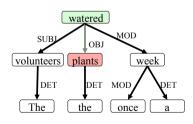
P: Several airlines polled saw costs grow more than expected, even after adjusting for inflation

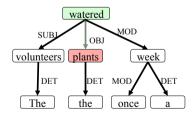
H: Some companies reported cost increases

	factory	flower	tree	water	fork	
grow	15	147	330	106	3	
ıse	120	149	175	946	48	
garden	5	200	198	118	17	
worker	279	0	5	18	0	
oroduction	102	6	9	28	0	
wild	3	216	35	30	0	

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University 5

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University 6


Semantic Similarity: Integrating Syntactic Information



Semantic Similarity in Context

	plant	factory	flower	water	fork
(grow, -SUBJ)	114	1	17	4	0
(close, -OBJ)	36	30	1	2	0
(car, MOD)	71	38	0	0	0
(fresh, MOD)	5	0	65	224	0
(deep, MOD)	1	0	9	166	4
(company, -MOD)	3	1	0	216	0
(worker, -MOD)	2	128	0	6	0
(wild, MOD)	45	0	167	11	0
(like, -OBJ)	42	13	107	128	8
(water, -OBJ)	23	0	5	0	0

	plant	factory	flower	tree	water	fork
grow	517	15	147	212	106	3
use	403	120	149	130	946	48
garden	316	5	200	119	118	17
worker	84	279	0	4	18	0
production	130	102	6	15	28	0
wild	96	3	216	63	30	0
				•		

Acquiring Script Information

Table 3. The top-20 most similar paths to "X solves Y".

	_		
Y is solved by X	Y is resolved in X		
X resolves Y	Y is solved through X		
X finds a solution to Y	X rectifies Y		
X tries to solve Y	X copes with Y		
X deals with Y	X overcomes Y		
Y is resolved by X	X eases Y		
X addresses Y	X tackles Y		
X seeks a solution to Y	X alleviates Y		
X do something about Y	X corrects Y		
X solution to Y	X is a solution to Y		

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University 10

Predicate-argument structure

 Semantic structure need not co-incide with syntactic structure:

Man pleases dog - Dog likes man The window broke - The rock broke the window -John broke the window with the rock

Thematic/Semantic roles

An Example

- Airbus sells five A380 planes to China Southern for 220 million
- China Southern buys five A380 planes from Airbus for 220 million
- Airbus arranged with China Southern for the sale of five A380 planes at a price of 220 million Euro
- Five A380 planes will go for 220 million Euro to China Southern

Common frame-semantic Analysis:

Frame: COMMERCIAL TRANSACTION

SELLER: Airbus

BUYER: China Southern GOODS: five A380 planes PRICE: 220 million Euro

PropBank example: give

Semantic Role Labelling

Roles:

Arg0: giver

Arg1: thing given

Example: double object

The executives gave the chefs a standing ovation.

Ara0: The executives

REL: gave

Arg1: a standing ovation

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University 13

Acquisition of Paraphrases and Inference Patterns

- Automatic Acquisition of Paraphrase patterns: Lin&Pantel 2001, Szpektor et al. 2004
- Inference as Directional Similarity: Bhagat et al. 2007, Pantel et al. 2007, Geffet&Dagan 2005, Geffet&Dagan 2004
- · Paraphrase acquisition for textual entailment

Target annotations:

- FrameNet style
- PropBank style
- Methods:
 - Supervised
 - Unsupervised

Seminar Computational Semantics 2011 © Manfred Pinkal, Saarland University 14

Acquiring Script Information

- Acquiring script information from texts: Chambers&Jurafsky 2008, Chambers&Jurafsky 2009, Chklovski&Pantel 2004
- · Acquiring script information from web experiments

The logical context

Natural Logic for Inference

P: John bought a new convertible. H: John bought a new car.

P: John didn't buy a new convertible. H: John didn't buy a new car.

· Natural logic and entailment relations: B. MacCartney 2009, Nairn et al. 2006