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Most previous approaches to language 
identification only deal with a small 
number of languages, which neglects 
low-resource languages entirely.

Baldwin and Lui (2010) have shown 
that the task is difficult when the 
number of possible languages is large, 
or when the input text is short.

They consider 67 languages, which is 
the broadest existing system we are 
aware of.

We crawled and cleaned data from:

Omniglot – Multilingual phrases and 
babel story translation

Wikipedia – Web encyclopedia

UDHR (Universal Declaration of 
Human Rights)

ODIN (Online Database of Interlinear 
Glossed Text) – IGTs from linguistics 
papers (Lewis and Xia, 2010)

An Crúbadán – Character n-gram and 
word frequencies collected through 
web crawling (Scannell, 2007)

Comparison of Size of Datasets:

We used frequencies of character n-
grams and words as features, and 
tested two types of model, assuming 
all languages were equally likely:

Cosine similarity (if vectors are 
normalised to unit length):

Sim ( f , x ) = ∑ xi fi

Multinomial Naive Bayes (if f is 
normalised to sum to one):

log P ( f  | x ) ∝ ∑ xi log fi

To avoid infinities, we applied Simple 
Good-Turing smoothing, which 
reserves some probability mass for 
unseen items.

 Produce a language identification 
system that can deal with a wide 
range of languages.

 Compile a corpus for training and 
evaluation.
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Conclusion
 Data is available but difficult to 

access and standardise.
 We crafted a corpus with >1000 

languages from different resources.
 Our language identification system 

can deal with >1000 languages.
 Results are competitive with other 

existing systems.
 Corpus and models are open-

source.

Future Work
 Evaluation of the Multinomial Naive 

Bayes model
 Feature selection
 Language family identification
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What language is this?

  i) ადამიანის უფლებათა
საყოველთაო დეკლარაცია

  ii) Nou tou imen nou'n ne

dan laliberte ek legalite

Challenge: Standardisation
 Different data resources use 

different language codes.
 We built an automatic mapping to 

ISO-639-3/5.
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Challenge: Imbalanced Data

We performed ten-fold cross-validation 
for the cosine model, comparing 
different three different feature sets:
 Character 1-5 grams
 Words
 Combined

Average Accuracy:
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 Accuracy depends heavily on the 
dataset being used.

 Neither character n-grams nor words 
consistently outperforms the other.

 The combined model outperforms 
using only words or character n-
grams, for all datasets.
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