Introduction to NER project

Omid Moradiannasab Michal Petko

Agenda

- NER task
 - Introduction
 - Applications
 - Ambiguity
 - Evaluation
- Solutions
- Rule based approaches
 Statistical approaches
 Available resources
 Tools
 Corpora
 Our goals in order

What is tagging?

- Tagging as one of the fundamental applications in NLP
 - POS tagging
 - Named-Entity tagging
- one of the very earliest problems considered in statistical or machine learning approaches to NLP
- Goes back to the late 1980s.

Part-of-Speech Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N ,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N ,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N ./.

N = Noun

V = Verb

. . .

P = Preposition

Adv = Adverb

Adj = Adjective

Named Entity Recognition

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits soared at [Company Boeing Co.], easily topping forecasts on [Location Wall Street], as their CEO [Person Alan Mulally] announced first quarter results.

- locate and classify atomic elements in text consisting of blocks of one or more words into predefined categories
- persons, organizations, locations, date, time, monetary values, percentages, etc
- at first glance does not look like a tagging problem

Named Entity Recognition as Tagging

INPUT:

Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

- Profits/NA soared/NA at/NA Boeing/SC Co./CC ,/NA easily/NA topping/NA forecasts/NA on/NA Wall/SL Street/CL ,/NA as/NA their/NA CEO/NA Alan/SP Mulally/CP announced/NA first/NA quarter/NA results/NA ./NA
- NA = No entity
- SC = Start Company
- CC = Continue Company
- SL = Start Location
- CL = Continue Location
-

NER Applications

 Is now available – and I think popular – in applications like Apple or Google mail, and web indexing

The Los Altos Robo January 6, 2012 and FRC (<u>MVHS</u> seasons. You are back and it was a	Create New iCal Event Show This Date in iCal	ving a potluck dinner Friday and the upcoming <u>Botball</u> agle Strike Robotics) of these dinners three years
	Сору	

NER Applications

- Some other uses:
 - Sentiment can be attributed to companies or products
 - A lot of IE relations are associations between named entities
 - For question answering, answers are often named entities.

Evaluation

- Recall and precision are straightforward for tasks like IR and text categorization, where there is only one grain size (documents)
- The measures don't behave the same when there are boundary errors (which are common)
 - First Bank of Chicago announced earnings ...
 - First Microsoft announced ... then Apple ...
 - This counts as 2 errors: both a fp and a fn
 - Selecting NOTHING would have been better
 - There are some other metrics (e.g. MUC scorer) which give some partial credit in such situations

Ambiguity?

- > Ambiguity as in many other problems in NLP
 - marathon is a village in Marathon County, Wisconsin, United States and a sporting event
 - "boston marathon" is a specific sporting event
- model of the words in and around an entity (Local & contextual)

Rule-based techniques

- Uses gazetteers (lists of words and phrases) that categorize names
 - E.g. cities, countries, ...
 - Doesn't have enough contextual information to handle ambiguity
- Rules also used to verify or find new entity names
 - Local pattern:
 - 14th March 2011
 - 14/03/2011
 - Contextual patterns:
 - "<number> <word> street" for addresses
 - "<street address>, <city>" or "in <city>" to verify city names
 - "<street address>, <city>, <state>" to find new cities
 - "<title> <name>" to find new names
- better precision, but at the cost of lower recall and months of work

Statistical methods

- From the training set (manually annotated text), induce a function that maps new sentences (X) to their tag sequences (Y)
 - Trigram Hidden Markov Model
 - representing the dependencies of the variables x and y as a joint probability distribution P(X,Y)
 - defines distributions over the "next word" given a finite history.
 - A sequence of decisions given a brief history
 - The formula for a trigram HMM:

$$p(x_1 \cdots x_n, y_1 \cdots y_n) = \prod_{i=3}^n q(y_i | y_{i-2}, y_{i-1}) \cdot \prod_{i=1}^n e(x_i | y_i)$$

- Global linear model
 - Conditional probability P(Y|X) instead of the joint probability
 - move away from history-based models No idea of attaching probabilities to "decisions"
 - model feature vectors over the whole sequence
 - Any features you want!
 - If current word is *base* and the tag is *VB*
 - If current word ends in *ing* and tag is *VBG*
 - if <t-2; t-1; t> = <DT, JJ, VB>
 - feature selection can be a difficult problem

$$F(x) = \underset{y \in \mathbf{GEN}(x)}{\operatorname{arg max}} \mathbf{f}(x, y) \cdot \mathbf{v}$$

> requires a large amount of manually annotated training data

Statistical methods

- Accurate recognition requires millions of words as training data
 - may be more expensive than developing rules for some applications
- Both rule-based and statistical can achieve about 90% effectiveness for categories Such as names, locations, organizations
 - others, such as product name, can be much worse

Available Tools

- <u>Stanford Named Entity Recognizer</u> : "a Java implementation of a (arbitrary order) linear chain Conditional Random Field (CRF) sequence models."
- NLTK "provides a classifier that has already been trained to recognize named entities, accessed with the function nltk.ne_chunk()"
- GATE (University of Sheffield) "is an NLP toolkit written in Java. It includes <u>ANNIE</u>, a ready-to-run information extraction system made from statistical NLP components. ANNIE includes a sentence splitter, a tokenizer, a part-of-speech tagger, and a named entity recognizer."

Corpora

Well-known POS-tagged corpus for Persian

- gathered form daily news and common texts
- contains about 2.6 millions manually tagged words with a tag set that contains 40 Persian POS tags
- Useful tags for our task:
 - N_SING_PR -> Bryan, Fox, News, ...
 - N_SING_LOC -> England, Shop, ...
 - N_SING_TIME -> year, today, night, earlier, ...
 - ...
- Persian Treebank
 - currently contains 1000 sentences
 - Useful tags for our task:
 - "pers" -> Adolf Born
 - "loc" -> New York City
 - "time" -> 1960
- Slovak corpus

Goals in order

- 1. Manually tagging a training, development, and test set for both languages (quite laborious task!)
- 2. Making gazetteers and regular expressions
- 3. Implementing one or more statistical approaches
- 4. Adapting and training one or more of the already available tools (optional)
- 5. Evaluating the taggers over both Persian and Slovak and doing a comparative study on the results of every approach
- 6. Extracting some contextual information like patterns of the context for every entity type (as a probable extension)

Any Question?

References

- "Tagging Problems, and Hidden Markov Models", Michael Collins, Columbia University
- "Information Extraction and Named Entity Recognition", Christopher Manning, Stanford University