
YAGO: A Core of Semantic Knowledge
Unifying WordNet and Wikipedia

Fabian M. Suchanek
Max-Planck-Institut

Saarbrücken / Germany

suchanekaOmpii.mpg.de

Gjergji Kasneci
Max-Planck-Institut

Saarbrücken / Germany

kasneciaOmpii.mpg.de

Gerhard Weikum
Max-Planck-Institut

Saarbrücken / Germany

weikumaOmpii.mpg.de

ABSTRACT
We present YAGO, a light-weight and extensible ontology
with high coverage and quality. YAGO builds on entities
and relations and currently contains more than 1 million
entities and 5 million facts. This includes the Is-A hierarchy
as well as non-taxonomic relations between entities (such
as hasWonPrize). The facts have been automatically ex-
tracted from Wikipedia and unified with WordNet, using
a carefully designed combination of rule-based and heuris-
tic methods described in this paper. The resulting knowl-
edge base is a major step beyond WordNet: in quality by
adding knowledge about individuals like persons, organiza-
tions, products, etc. with their semantic relationships – and
in quantity by increasing the number of facts by more than
an order of magnitude. Our empirical evaluation of fact cor-
rectness shows an accuracy of about 95%. YAGO is based on
a logically clean model, which is decidable, extensible, and
compatible with RDFS. Finally, we show how YAGO can be
further extended by state-of-the-art information extraction
techniques.

Categories and Subject Descriptors
H.0 [Information Systems]: General

General Terms
Knowledge Extraction, Ontologies

Keywords
Wikipedia, WordNet

1. INTRODUCTION

1.1 Motivation
Many applications in modern information technology uti-

lize ontological background knowledge. This applies above
all to applications in the vision of the Semantic Web, but
there are many other application fields. Machine translation
(e.g. [5]) and word sense disambiguation (e.g. [3]) exploit
lexical knowledge, query expansion uses taxonomies (e.g.
[16, 11, 27]), document classification based on supervised or
semi-supervised learning can be combined with ontologies
(e.g. [14]), and [13] demonstrates the utility of background
knowledge for question answering and information retrieval.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

Furthermore, ontological knowledge structures play an im-
portant role in data cleaning (e.g., for a data warehouse) [6],
record linkage (aka. entity resolution) [7], and information
integration in general [19].

But the existing applications typically use only a single
source of background knowledge (mostly WordNet [10] or
Wikipedia). They could boost their performance, if a huge
ontology with knowledge from several sources was available.
Such an ontology would have to be of high quality, with ac-
curacy close to 100 percent, i.e. comparable in quality to
an encyclopedia. It would have to comprise not only con-
cepts in the style of WordNet, but also named entities like
people, organizations, geographic locations, books, songs,
products, etc., and also relations among these such as what-
is-located-where, who-was-born-when, who-has-won-which-
prize, etc. It would have to be extensible, easily re-usable,
and application-independent. If such an ontology were avail-
able, it could boost the performance of existing applications
and also open up the path towards new applications in the
Semantic Web era.

1.2 Related Work
Knowledge representation is an old field in AI and has

provided numerous models from frames and KL-ONE to
recent variants of description logics and RDFS and OWL
(see [22] and [24]). Numerous approaches have been pro-
posed to create general-purpose ontologies on top of these
representations. One class of approaches focuses on extract-
ing knowledge structures automatically from text corpora.
These approaches use information extraction technologies
that include pattern matching, natural-language parsing,
and statistical learning [25, 9, 4, 1, 23, 20, 8]. These tech-
niques have also been used to extend WordNet by Wikipedia
individuals [21]. Another project along these lines is Know-
ItAll [9], which aims at extracting and compiling instances
of unary and binary predicate instances on a very large scale
– e.g., as many soccer players as possible or almost all com-
pany/CEO pairs from the business world. Although these
approaches have recently improved the quality of their re-
sults considerably, the quality is still significantly below that
of a man-made knowledge base. Typical results contain
many false positives (e.g., IsA(Aachen Cathedral, City), to
give one example from KnowItAll). Furthermore, obtaining
a recall above 90 percent for a closed domain typically en-
tails a drastic loss of precision in return. Thus, information-
extraction approaches are only of little use for applications
that need near-perfect ontologies (e.g. for automated rea-
soning). Furthermore, they typically do not have an explicit
(logic-based) knowledge representation model.

Due to the quality bottleneck, the most successful and
widely employed ontologies are still man-made. These in-
clude WordNet [10], Cyc or OpenCyc [17], SUMO [18], and
especially domain-specific ontologies and taxonomies such as
SNOMED1 or the GeneOntology2. These knowledge sources
have the advantage of satisfying the highest quality expecta-
tions, because they are manually assembled. However, they
suffer from low coverage, high cost for assembly and quality
assurance, and fast aging. No human-made ontology knows
the most recent Windows version or the latest soccer stars.

1.3 Contributions and Outline
This paper presents YAGO3, a new ontology that com-

bines high coverage with high quality. Its core is assem-
bled from one of the most comprehensive lexicons available
today, Wikipedia. But rather than using information ex-
traction methods to leverage the knowledge of Wikipedia,
our approach utilizes the fact that Wikipedia has category
pages. Category pages are lists of articles that belong to a
specific category (e.g., Zidane is in the category of French
football players4). These lists give us candidates for enti-
ties (e.g. Zidane), candidates for concepts (e.g. IsA(Zidane,
FootballPlayer)) [15] and candidates for relations (e.g. isC-
itizenOf(Zidane, France)). In an ontology, concepts have to
be arranged in a taxonomy to be of use. The Wikipedia
categories are indeed arranged in a hierarchy, but this hier-
archy is barely useful for ontological purposes. For example,
Zidane is in the super-category named ”Football in France”,
but Zidane is a football player and not a football. WordNet,
in contrast, provides a clean and carefully assembled hierar-
chy of thousands of concepts. But the Wikipedia concepts
have no obvious counterparts in WordNet.

In this paper we present new techniques that link the
two sources with near-perfect accuracy. To the best of
our knowledge, our method is the first approach that ac-
complishes this unification between WordNet and facts de-
rived from Wikipedia with an accuracy of 97%. This al-
lows the YAGO ontology to profit, on one hand, from the
vast amount of individuals known to Wikipedia, while ex-
ploiting, on the other hand, the clean taxonomy of concepts
from WordNet. Currently, YAGO contains roughly 1 million
entities and 5 million facts about them.

YAGO is based on a data model of entities and binary re-
lations. But by means of reification (i.e., introducing iden-
tifiers for relation instances) we can also express relations
between relation instances (e.g., popularity rankings of pairs
of soccer players and their teams) and general properties of
relations (e.g., transitivity or acyclicity). We show that, de-
spite its expressiveness, the YAGO data model is decidable.

YAGO is designed to be extendable by other sources – be
it by other high quality sources (such as gazetteers of geo-
graphic places and their relations), by domain-specific ex-
tensions, or by data gathered through information extrac-
tion from Web pages. We conduct an enrichment experi-
ment with the state-of-the-art information extraction system
Leila[25]. We observe that the more facts YAGO contains,
the better it can be extended. We hypothesize that this pos-
itive feedback loop could even accelerate future extensions.

The rest of this paper is organized as follows. In Section
2 we introduce YAGO’s data model. Section 3 describes the

1http://www.snomed.org
2http://www.geneontology.org/
3Yet Another Great Ontology
4Soccer is called football in some countries

sources from which the current YAGO is assembled, namely,
Wikipedia and WordNet. In Section 4 we give an overview of
the system behind YAGO. We explain our extraction tech-
niques and we show how YAGO can be extended by new
data. Section 5 presents an evaluation, a comparison to
other ontologies, an enrichment experiment and sample facts
from YAGO. We conclude with a summary in Section 6.

2. THE YAGO MODEL

2.1 Structure
To accommodate the ontological data we already ex-

tracted and to be prepared for future extensions, YAGO
must be based on a thorough and expressive data model.
The model must be able to express entities, facts, relations
between facts and properties of relations. The state-of-the-
art formalism in knowledge representation is currently the
Web Ontology Language OWL [24]. Its most expressive vari-
ant, OWL-full, can express properties of relations, but is
undecidable. The weaker variants of OWL, OWL-lite and
OWL-DL, cannot express relations between facts. RDFS,
the basis of OWL, can express relations between facts, but
provides only very primitive semantics (e.g. it does not know
transitivity). This is why we introduce a slight extension of
RDFS, the YAGO model. The YAGO model can express
relations between facts and relations, while it is at the same
time simple and decidable.

As in OWL and RDFS, all objects (e.g. cities, people,
even URLs) are represented as entities in the YAGO model.
Two entities can stand in a relation. For example, to state
that Albert Einstein won the Nobel Prize, we say that the
entity Albert Einstein stands in the hasWonPrize rela-
tion with the entity Nobel Prize. We write

AlbertEinstein hasWonPrize NobelPrize

Numbers, dates, strings and other literals are represented as
entities as well. This means that they can stand in relations
to other entities. For example, to state that Albert Einstein
was born in 1879, we write:

AlbertEinstein bornInYear 1879

Entities are abstract ontological objects, which are
language-independent in the ideal case. Language uses
words to refer to these entities. In the YAGO model, words
are entities as well. This makes it possible to express that a
certain word refers to a certain entity, like in the following
example:

”Einstein” means AlbertEinstein

This allows us to deal with synonymy and ambiguity. The
following line says that ”Einstein” may also refer to the mu-
sicologist Alfred Einstein:

”Einstein” means AlfredEinstein

We use quotes to distinguish words from other entities. Sim-
ilar entities are grouped into classes. For example, the class
physicist comprises all physicists and the class word com-
prises all words. Each entity is an instance of at least one
class. We express this by the type relation:

AlbertEinstein type physicist

Classes are also entities. Thus, each class is itself an instance
of a class, namely of the class class. Classes are arranged

in a taxonomic hierarchy, expressed by the subClassOf re-
lation:

physicist subClassOf scientist

In the YAGO model, relations are entities as well. This
makes it possible to represent properties of relations (like
transitivity or subsumption) within the model. The follow-
ing line, e.g., states that the subClassOf relation is tran-
sitive by making it an instance of the class transitive-
Relation:

subclassOf type transitiveRelation

The triple of an entity, a relation and an entity is called
a fact. The two entities are called the arguments of the
fact. Each fact is given a fact identifier. As RDFS, the
YAGO model considers fact identifiers to be entities as well.
This allows us to represent for example that a certain fact
was found at a certain URL. For example, suppose that the
above fact (Albert Einstein, bornInYear, 1879) had the
fact identifier #1, then the following line would say that this
fact was found in Wikipedia:

#1 foundIn http : //www.wikipedia.org/Einstein

We will refer to entities that are neither facts nor relations
as common entities. Common entities that are not classes
will be called individuals. Then, a YAGO ontology over a
finite set of common entities C, a finite set of relation names
R and a finite set of fact identifiers I is a function

y : I → (I ∪ C ∪ R)×R× (I ∪ C ∪ R)

A YAGO ontology y has to be injective and total to ensure
that every fact identifier of I is mapped to exactly one fact.

Some facts require more than two arguments (for example
the fact that Einstein won the Nobel Prize in 1921). One
common way to deal with this problem is to use n-ary re-
lations (as for example in won-prize-in-year(Einstein,
Nobel-Prize, 1921)). In a relational database setting,
where relations correspond to tables, this has the disadvan-
tage that much space will be wasted if not all arguments of
the n-ary facts are known. Worse, if an argument (like e.g.
the place of an event) has not been foreseen in the design
phase of the database, the argument cannot be represented.
Another way of dealing with an n-ary relation is to intro-
duce a binary relation for each argument (e.g. winner,prize,
time). Then, an n-ary fact can be represented by a new
entity that is linked by these binary relations to all of its
arguments (as is proposed for OWL):

AlbertEinstein winner EinsteinWonNP1921
NobelPrize prize EinsteinWonNP1921
1921 time EinsteinWonNP1921

However, this method cannot deal with additional argu-
ments to relations that were designed to be binary. The
YAGO model offers a simple solution to this problem: It is
based on the assumption that for each n-ary relation, a pri-
mary pair of its arguments can be identified. For example,
for the above won-prize-in-year-relation, the pair of the
person and the prize could be considered a primary pair.
The primary pair can be represented as a binary fact with
a fact identifier:

#1 : AlbertEinstein hasWonPrize NobelPrize

All other arguments can be represented as relations that
hold between the primary pair and the other argument:

#2 : #1 time 1921

2.2 Semantics
This section will give a model-theoretic semantics to

YAGO. We first prescribe that the set of relation names R
for any YAGO ontology must contain at least the relation
names type, subClassOf, domain, range and subRelation-
Of. The set of common entities C must contain at least
the classes entity, class, relation, acyclicTransitive-
Relation and classes for all literals (as evident from the
following list). For the rest of the paper, we assume a given
set of common entities C and a given set of relations R.
The set of fact identifiers used by a YAGO ontology y is
implicitly given by I = domain(y). To define the semantics
of a YAGO ontology, we consider only the set of possible
facts F = (I ∪ C ∪ R) × R × (I ∪ C ∪ R). We define a
rewrite system → ⊆ P(F) × P(F), i.e. → reduces one
set of facts to another set of facts. We use the shorthand
notation {f1, ..., fn} ↪→ f to say that

F ∪ {f1, ..., fn} → F ∪ {f1, ..., fn} ∪ {f}

for all F ⊆ F , i.e. if a set of facts contains the facts f1, ..., fn,
then the rewrite rule adds f to this set. Our rewrite system
contains the following (axiomatic) rules:5

∅ ↪→ (domain, domain, relation)
∅ ↪→ (domain, range, class)
∅ ↪→ (range, domain, relation)
∅ ↪→ (range, range, class)
∅ ↪→ (subClassOf, type, acyclicTransitiveRelation)
∅ ↪→ (subClassOf, domain, class)
∅ ↪→ (subClassOf, range, class)
∅ ↪→ (type, range, class)
∅ ↪→ (subRelationOf, type, acyclicTransitiveRelation)
∅ ↪→ (subRelationOf, domain, relation)
∅ ↪→ (subRelationOf, range, relation)
∅ ↪→ (boolean, subClassOf, literal)
∅ ↪→ (number, subClassOf, literal)
∅ ↪→ (rationalNumber, subClassOf, number)
∅ ↪→ (integer, subClassOf, rationalNumber)
∅ ↪→ (timeInterval, subClassOf, literal)
∅ ↪→ (dateTime, subClassOf, timeInterval)
∅ ↪→ (date, subClassOf, timeInterval)
∅ ↪→ (string, subClassOf, literal)
∅ ↪→ (character, subClassOf, string)
∅ ↪→ (word, subClassOf, string)
∅ ↪→ (URL, subClassOf, string)

Furthermore, it contains the following rules for all
r, r1, r2 ∈ R, x, y, c, c1, c2 ∈ I ∪ C ∪ R, r1 6=
type, r2 6= subRelationOf, r 6= subRelationOf,
r 6= type, c 6= acyclicTransitiveRelation, c2 6=
acyclicTransitiveRelation:

(1) {(r1, subRelationOf, r2), (x, r1, y)} ↪→ (x, r2, y)
(2) {(r,type, acyclicTransitiveRelation), (x, r, y), (y, r, z)}

↪→ (x, r, z)
(3) {(r,domain, c), (x, r, c)} ↪→ (x,type, c)
(4) {(r,range, c), (x, r, y)} ↪→ (y,type, c)
(5) {(x,type, c1), (c1, subClassOf, c2)} ↪→ (x,type, c2)

Theorem 1: [Convergence of →]
Given a set of facts F ⊂ F , the largest set S with F →∗ S
is unique.

(The theorems are proven in the appendix.) Given a YAGO
ontology y, the rules of → can be applied to its set of facts,

5The class hierarchy of literals is inspired by SUMO[18]

range(y). We call the largest set that can be produced by
applying the rules of → the set of derivable facts of y, D(y).
Two YAGO ontologies y1, y2 are equivalent if the fact iden-
tifiers in y2 can be renamed so that

(y1 ⊆ y2 ∨ y2 ⊆ y1) ∧ D(y1) = D(y2)

The deductive closure of a YAGO ontology y is computed by
adding the derivable facts to y. Each derivable fact (x, r, y)
needs a new fact identifier, which is just fx,r,y. Using a
relational notation for the function y, we can write this as

y∗ := y ∪ { (fr,x,y, (r, x, y)) |
(x, r, y) ∈ D(y) , (r, x, y) 6∈ range(y) }

A structure for a YAGO ontology y is a triple of

• a set U (the universe)

• a function D : I ∪ C ∪ R → U (the denotation)

• a function E : D(R) → U×U (the extension function)

Like in RDFS, a YAGO structure needs to define the exten-
sions of the relations by the extension function E . E maps
the denotation of a relation symbol to a relation on universe
elements. We define the interpretation Ψ with respect to a
structure < U ,D, E > as the following relation:

Ψ := {(e1, r, e2) | (D(e1),D(e2)) ∈ E(D(r))}

We say that a fact (e1, r, e2) is true in a structure, if it
is contained in the interpretation. A model of a YAGO
ontology y is a structure such that

1. all facts of y∗ are true

2. if Ψ(x,type, literal) for some x, then D(x) = x

3. if Ψ(r,type, acyclicTransitiveRelation) for some r,
then there exists no x such that Ψ(x, r, x)

A YAGO ontology y is called consistent iff there exists a
model for it. Obviously, a YAGO ontology is consistent iff

6 ∃x, r : (r,type, acyclicTransitiveRelation) ∈ D(y)
∧ (x, r, x) ∈ D(y)

Since D(y) is finite, the consistency of a YAGO ontology is
decidable. A base of a YAGO ontology y is any equivalent
YAGO ontology b with b ⊆ y. A canonical base of y is a
base so that there exists no other base with less elements.

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

In fact, the canonical base of a YAGO ontology can be com-
puted by greedily removing derivable facts from the ontol-
ogy. This makes the canonical base a natural choice to effi-
ciently store a YAGO ontology.

2.3 Relation to Other Formalisms
The YAGO model is very similar to RDFS. In RDFS, rela-

tions are called properties. Just as YAGO, RDFS knows the
properties domain, range, subClassOf and subPropertyOf
(i.e. subRelationOf). These properties have a semantics
that is equivalent to that of the corresponding YAGO re-
lations. RDFS also knows fact identifiers, which can occur
as arguments of other facts. The following excerpt shows
how some sample facts of Section 2.1 can be represented in
RDFS. Each fact of YAGO becomes a triple in RDFS.

<rdf:Description
rdf:about="http://mpii.mpg.de/yago#Albert_Einstein">
<yago:bornInYear rdf:ID="f1">1879</yago:bornInYear>

</rdf:Description>
<rdf:Description

rdf:about="http://mpii.mpg.de/yago#f1">
<yago:foundIn rdf:ID="f2" rdf:resource="http:..."/>

</rdf:Description>

However, RDFS does not have a built-in transitive relation
or an acyclic transitive relation, as YAGO does. This en-
tails that the property acyclicTransitiveRelation can be
defined and used, but that RDFS would not know its se-
mantics.

YAGO uses fact identifiers, but it does not have built-
in relations to make logical assertions about facts (e.g. it
does not allow to say that a fact is false). If one relies on
the denotation to map a fact identifier to the corresponding
fact element in the universe, one can consider fact identi-
fiers as simple individuals. This abandons the syntactic link
between a fact identifier and the fact. In return, it opens
up the possibility of mapping a YAGO ontology to an OWL
ontology under certain conditions. OWL has built-in coun-
terparts for almost all built-in data types, classes, and rela-
tions of YAGO. The only concept that does not have an ex-
act built-in counterpart is the acyclicTransitiveRelation.
However, this is about to change. OWL is currently being
refined to its successor, OWL 1.1. The extended description
logic SROIQ [12], which has been adopted as the logical
basis of OWL 1.1, allows to express irreflexivity and transi-
tivity. This allows to define acyclic transitivity. We plan to
investigate the relation of YAGO and OWL once OWL 1.1
has been fully established.

3. SOURCES FOR YAGO

3.1 WordNet
WordNet is a semantic lexicon for the English language

developed at the Cognitive Science Laboratory of Prince-
ton University. WordNet distinguishes between words as
literally appearing in texts and the actual senses of the
words. A set of words that share one sense is called a
synset. Thus, each synset identifies one sense (i.e., se-
mantic concept). Words with multiple meanings (ambigu-
ous words) belong to multiple synsets. As of the current
version 2.1, WordNet contains 81,426 synsets for 117,097
unique nouns. (Wordnet also includes other types of words
like verbs and adjectives, but we consider only nouns in
this paper.) WordNet provides relations between synsets
such as hypernymy/hyponymy (i.e., the relation between a
sub-concept and a super-concept) and holonymy/meronymy
(i.e., the relation between a part and the whole); for this
paper, we focus on hypernyms/hyponyms. Conceptually,
the hypernymy relation in WordNet spans a directed acyclic
graph (DAG) with a single source node called Entity.

3.2 Wikipedia
Wikipedia is a multilingual, Web-based encyclopedia. It is

written collaboratively by volunteers and is available for free.
We downloaded the English version of Wikipedia in January
2007, which comprised 1,600,000 articles at that time. Each
Wikipedia article is a single Web page and usually describes
a single topic.

The majority of Wikipedia pages have been manually as-
signed to one or multiple categories. The page about Albert

Einstein, for example, is in the categories German language
philosophers, Swiss physicists, and 34 more. Conve-
niently, the categorization of Wikipedia pages and their link
structure are available as SQL tables, so that they can be
exploited without parsing the actual Wikipedia articles.

4. THE YAGO SYSTEM
Our system is designed to extract a YAGO ontology from

WordNet and Wikipedia. Currently, the relations of YAGO
are fixed. Their properties (such as domain and range) are
described in Table 2.

YAGO is designed to be extendable, i.e. new facts from
new sources can be added to the ontology. For this purpose,
each fact is tagged with a confidence value between 0 and
1. Currently, all facts are tagged with their empirical confi-
dence estimation (see Section 5.1.1), which lies between 0.90
and 0.98. Facts extracted by other techniques (e.g. based
on statistical learning) can have smaller confidence values.

4.1 Knowledge Extraction

4.1.1 Thetype relation
Since Wikipedia knows far more individuals than Word-

Net, the individuals for YAGO are taken from Wikipedia.
Each Wikipedia page title is a candidate to become an
individual in YAGO. For example, the page title ”Al-
bert Einstein” is a candidate to become the individual
AlbertEinstein in our ontology. The page titles in
Wikipedia are unique.

The Wikipedia Category System. To establish for
each individual its class, we exploit the category system of
Wikipedia. There are different types of categories: Some
categories, the conceptual categories, indeed identify a class
for the entity of the page (e.g. Albert Einstein is in the cat-
egory Naturalized citizens of the United States). Other cat-
egories serve administrative purposes (e.g. Albert Einstein
is also in the category Articles with unsourced statements),
others yield relational information (like 1879 births) and
again others indicate merely thematic vicinity (like Physics).

Identifying Conceptual Categories. Only the concep-
tual categories are candidates for serving as a class for the
individual. The administrative and relational categories are
very few (less than a dozen) and can be excluded by hand.
To distinguish the conceptual categories from the thematic
ones, we employ a shallow linguistic parsing of the category
name (using the Noun Group Parser of [26]). For example, a
category name like Naturalized citizens of the United States
is broken into a pre-modifier (Naturalized), a head (citizens)
and a post-modifier (of the United States). Heuristically, we
found that if the head of the category name is a plural word,
the category is most likely a conceptual category. We used
the Pling-Stemmer from [26] to reliably identify and stem
plural words. This gives us a (possibly empty) set of con-
ceptual categories for each Wikipedia page. Conveniently,
articles that do not describe individuals (like hub pages) do
not have conceptual categories. Thus, the conceptual cat-
egories yield not only the type relation, but also, as its
domain, the set of individuals. It also yields, as its range, a
set of classes.

4.1.2 ThesubClassOf relation
The Wikipedia categories are organized in a directed

acyclic graph, which yields a hierarchy of categories. This
hierarchy, however, reflects merely the thematic structure

of the Wikipedia pages (e.g., as mentioned in the introduc-
tion, Zidane is in the category Football in France). Thus,
the hierarchy is of little use from an ontological point of
view. Hence we take only the leaf categories of Wikipedia
and ignore all other categories (such as Football in France).
Then we use WordNet to establish the hierarchy of classes,
because WordNet offers an ontologically well-defined taxon-
omy of synsets.

Integrating WordNet Synsets. Each synset of Word-
Net becomes a class of YAGO. Care is taken to exclude the
proper nouns known to WordNet, which in fact would be in-
dividuals (Albert Einstein, e.g., is also known to WordNet,
but excluded). There are roughly 15,000 cases, in which an
entity is contributed by both WordNet and Wikipedia (i.e.
a WordNet synset contains a common noun that is the name
of a Wikipedia page). In some of these cases, the Wikipedia
page describes an individual that bears a common noun as
its name (e.g. ”Time exposure” is a common noun for Word-
Net, but an album title for Wikipedia). In the overwhelming
majority of the cases, however, the Wikipedia page is simply
about the common noun (e.g. the Wikipedia page ”Physi-
cist” is about physicists). To be on the safe side, we always
give preference to WordNet and discard the Wikipedia in-
dividual in case of a conflict. This way, we lose information
about individuals that bear a common noun as name, but
it ensures that all common nouns are classes and no entity
is duplicated.

Establishing subClassOf. The subClassOf hierarchy
of classes is taken from the hyponymy relation from Word-
Net: A class is a subclass of another one, if the first synset is
a hyponym of the second. Now, the lower classes extracted
from Wikipedia have to be connected to the higher classes
extracted from WordNet. For example, the Wikipedia class
American people in Japan has to be made a subclass of the
WordNet class person. To this end, we use the following
algorithm:

Function wiki2wordnet(c)
Input: Wikipedia category name c
Output: WordNet synset
1 head =headCompound(c)
2 pre =preModifier(c)
3 post =postModifier(c)
4 head =stem(head)
5 If there is a WordNet synset s for pre + head
6 return s
7 If there are WordNet synsets s1, ...sn for head
8 (ordered by their frequency for head)
9 return s1

10 fail

We first determine the head compound, the pre-modifier
and the post-modifier of the category name (lines 1-3). For
the Wikipedia category American people in Japan, these
are ”American”, ”people” and ”in Japan”, respectively. We
stem the head compound of the category name (i.e. people)
to its singular form (i.e. person) in line 4. Then we check
whether there is a WordNet synset for the concatenation of
pre-modifier and head compound (i.e. American person).
If this is the case, the Wikipedia class becomes a subclass
of the WordNet class (lines 5-6). If this is not the case, we
exploit that the Wikipedia category names are almost exclu-
sively endocentric compound words (i.e. the category name
is a hyponym of its head compound, e.g. ”American per-
son” is a hyponym of ”person”). The head compound (per-
son) has to be mapped to a corresponding WordNet synset

(s1, ..., sn in line 7). This mapping is non-trivial, since one
word may refer to multiple synsets in WordNet. We exper-
imented with different disambiguation approaches. Among
others, we mapped the co-occurring categories of a given
category to their possible synsets as well and determined
the smallest subgraph of synsets that contained one synset
for each category. These approaches lead to non-satisfactory
results.

Finally, we found that the following solution works best:
WordNet stores with each word the frequencies with which
it refers to the possible synsets. We found out that map-
ping the head compound simply to the most frequent synset
(s1) yields the correct synset in the overwhelming major-
ity of cases. This way, the Wikipedia class American peo-
ple in Japan becomes a subclass of the WordNet class per-
son/human.

Exceptions. There were only a dozen prominent excep-
tions, which we corrected manually. For example, all cate-
gories with the head compound capital in Wikipedia mean
the ”capital city”, but the most frequent sense in WordNet
is ”financial asset”. In summary, we obtain a complete hier-
archy of classes, where the upper classes stem from WordNet
and the leaves come from Wikipedia.

4.1.3 Themeans relation
Exploiting WordNet Synsets. Wikipedia and Word-

Net also yield information on word meaning. WordNet for
example reveals the meaning of words by its synsets. For
example, the words ”urban center” and ”metropolis” both
belong to the synset city. We leverage this information in
two ways. First, we introduce a class for each synset known
to WordNet (i.e. city). Second, we establish a means re-
lation between each word of synset and the corresponding
class (i.e. (”metropolis”, means, city)).

Exploiting Wikipedia Redirects. Wikipedia con-
tributes names for the individuals by its redirect system: a
Wikipedia redirect is a virtual Wikipedia page, which links
to a real Wikipedia page. These links serve to redirect users
to the correct Wikipedia article. For example, if the user
typed ”Einstein, Albert” instead of ”Albert Einstein”, then
there is a virtual redirect page for ”Einstein, Albert” that
links to ”Albert Einstein”. We exploit the redirect pages to
give us alternative names for the entities. For each redirect,
we introduce a corresponding means fact (e.g. (”Einstein,
Albert”, means, Albert Einstein)).

Parsing Person Names. The YAGO hierarchy of
classes allows us to identify individuals that are persons.
If the words used to refer to these individuals match the
common pattern of a given name and a family name, we
extract the name components and establish the relations
givenNameOf and familyNameOf. For example, we know
that Albert Einstein is a person, so we introduce the facts
(”Einstein”, familyNameOf, Albert Einstein) and (”Al-
bert”, givenNameOf, Albert Einstein). Both are sub-
relations of means, so that the family name ”Einstein”,
for example, also means Albert Einstein. We used the
Name Parser from [26] to identify and decompose the per-
son names.

4.1.4 Other relations
Exploiting Wikipedia Categories. We exploit rela-

tional Wikipedia categories for the extraction of the follow-
ing relations: bornInYear, diedInYear, establishedIn,
locatedIn, writtenInYear, politicianOf, and has-
WonPrize. For the extraction of the bornInYear and

diedInYear facts we make use of the categories ending with
“ births” and “ deaths” respectively. For example, if a page
is in the category “1879 births”, it means that the corre-
sponding individual is a person born in 1879.

The establishedIn facts are extracted from categories
ending with “ establishments”. For example, if a page is in
the category 1980 establishments, this means that the cor-
responding individual (mostly an organization) was estab-
lished in 1980. We normalize vague date expressions (like
“5’th century BC”) to a common form (e.g. -500).

The locatedIn facts are extracted from categories that
imply that all its members share a geographical location.
For example, if a page is in the category Cities in Germany,
this indicates that the corresponding individual is located in
Germany. We make use of categories starting with Countries
in..., Rivers of..., Attractions in... and similar ones. Note
that we do not need to extract the classes for the individuals,
since this information has already been extracted within the
scope of the type relation.

Further relations that we considered are the writ-
tenInYear relation which holds between books and the
year in which they appeared, the politicianOf relation
which holds between politicians and states as well as the
hasWonPrize relation which concerns prize winners and
the prizes they won. The facts for these three relations were
extracted analogously to the afore mentioned facts.

Filtering the Results. Not all facts extracted this
way constitute valid facts in the YAGO ontology, be-
cause their arguments may not be known entities in
YAGO. For example, Eugene of Savoy is in the cat-
egory “Governors of the Habsburg Netherlands”, but we
cannot admit the fact (Eugene of Savoy, politicianOf,
Habsburg Netherlands), because Habsburg Netherlands is
not a page in Wikipedia and hence not an entity in YAGO.
This is why a cleaning step is necessary, in which the sys-
tem filters out all facts with arguments that are not in the
domain of the previously established type relation. Despite
the huge number of extracted facts, the actual extraction
process took only a few hours. This is because it is not nec-
essary to access the Wikipedia pages themselves – let alone
parse them or POS-tag them. All information is derived
from the category lists.

4.1.5 Meta-relations
Descriptions. Due to its generality, the YAGO ontology

can store meta-relations uniformly together with usual re-
lations. For example, we store for each individual the URL
of the corresponding Wikipedia page. This will allow future
applications to provide the user with detailed information on
the entities. We introduce the describes relation between
the individual and its URL for this purpose.

Witnesses. YAGO is prepared to be extended by new
facts. If a new fact was extracted from a particular Web
page, we call this page the witness for the fact. We introduce
the foundIn relation, which holds between a fact and the
URL of the witness page. We use the extractedBy rela-
tion to identify the technique by which a fact was extracted.
The information about witnesses will enable applications to
use, e.g., only facts extracted by a certain technique, facts
extracted from a certain source or facts of a certain date.

Context. Last, we store for each individual the individu-
als it is linked to in the corresponding Wikipedia page. For
example, Albert Einstein is linked to Relativity Theory.
For this purpose, we introduce the context relation be-
tween individuals. This will allow applications to use re-

lated terms for disambiguation purposes. Different from a
simple co-occurrence table of words, the context relation
connects entities instead of words, i.e. its arguments are
already disambiguated.

4.2 YAGO Storage
The YAGO model itself is independent of a particular data

storage format. To produce minimal overhead, we decided
to use simple text files as an internal format. We maintain a
folder for each relation and each folder contains files that list
the entity pairs. We store only facts that cannot be derived
by the rewrite rules of YAGO (see 2.2), so that we store in
fact the unique canonical base of the ontology.

Furthermore, we provide conversion programs to convert
the ontology to different output formats. First, YAGO is
available as a simple XML version of the text files. Fur-
thermore, YAGO can be converted to a database table.
The table has the simple schema FACTS(factId, arg1,
relation, arg2, confidence). We provide software to
load YAGO into an Oracle, Postgres or MySQL database.
For our experiments, we used the Oracle version of YAGO.
Last, we also provide an RDFS version of YAGO, as ex-
plained in Section 2.3.

4.3 Enriching YAGO
YAGO is designed to be extendable by new facts. An

application that adds new facts to the YAGO ontology is
required to obey the following protocol. Suppose that the
application wishes to add the fact (x, r, y). First, it has to
map x and y to existing entities in the YAGO ontology. This
task is essentially a word sense disambiguation problem, in
which the “words” x and y have to be disambiguated to
YAGO entities. For the disambiguation, the application can
make use of the extensive information that YAGO provides
for the existing entities: the relations to other entities, the
words used to refer to the entities, and the context of the
entities, as provided by the context relation. If x or y
do not yet exist in the ontology, they have to be added as
new entities. Next, r has to be mapped to a relation in the
YAGO ontology. Currently, YAGO comprises only a fixed
set of relations, which simplifies this task. The application
should provide a confidence value c ∈ [0, 1] for the proposed
fact (x, r, y).

If (x, r, y) exists already in the ontology, the application
merely adds a new witness for this fact. Supposing that the
fact identifier of the existing fact is f and that the witness
is w, the new fact would be (f, foundIn, w) with confidence
c. Then, the confidence of the existing fact has to be recom-
puted as an aggregation of the confidences of the witnesses.
We propose to take the maximum, but other options can
be considered. If (x, r, y) does not yet exist in the ontol-
ogy, the application has to add the fact together with a
new fact identifier. We propose to use name spaces as in
OWL/RDFS: each application has a universally unique id
and the fact identifier is composed of the application id and
a running number. Section 5.3 shows how the enrichment
can be implemented in practice.

5. EVALUATION AND EXPERIMENTS

5.1 Manual evaluation

5.1.1 Accuracy
We were interested in the accuracy of YAGO. To evaluate

the accuracy of an ontology, its facts have to be compared to

some ground truth. Since there is no computer-processable
ground truth of suitable extent, we had to rely on manual
evaluation. We presented randomly selected facts of the on-
tology to human judges and asked them to assess whether
the facts were correct. Since common sense often does not
suffice to judge the correctness of YAGO facts, we also pre-
sented them a snippet of the corresponding Wikipedia page.
Thus, our evaluation compared YAGO against the ground
truth of Wikipedia (i.e., it does not deal with the problem
of Wikipedia containing false information). Of course, it
would be pointless to evaluate the portion of YAGO that
stems from WordNet, because we can assume human ac-
curacy here. Likewise, it would be pointless to evaluate the
non-heuristic relations in YAGO, such as describes, means,
or context. This is why we evaluated only those facts that
constitute potentially weak points in the ontology. To be
sure that our findings are significant, we computed the Wil-
son interval for α = 5%.

Table 1: Accuracy of YAGO
Relation # evalu- Accuracy

ated facts
subClassOf 298 97.70% ± 1.59%
type 343 94.54% ± 2.36%
familyNameOf 221 97.81% ± 1.75%
givenNameOf 161 97.62% ± 2.08%
establishedIn 170 90.84% ± 4.28%
bornInYear 170 93.14% ± 3.71%
diedInYear 147 98.72% ± 1.30%
locatedIn 180 98.41% ± 1.52%
politicianOf 176 92.43% ± 3.93%
writtenInYear 172 94.35% ± 3.33%
hasWonPrize 122 98.47% ± 1.57%

The evaluation shows very good results. Especially the
crucial type relation and the link between WordNet and
Wikipedia, subClassOf, turned out to be very accurate.
But our heuristic algorithms cannot always achieve an ac-
curacy of 100%. This may also have to do with the in-
consistency of the underlying sources. For example, for the
relation bornInYear, most false facts stem from erroneous
Wikipedia categories (e.g. some person born in 1802 is in
the Wikipedia category 1805 births). In addition, the eval-
uation of an ontology is sometimes a philosophical issue. To
start with, even simple relations suffer from vagueness (e.g.
is Lake Victoria locatedIn Tanzania, if Tanzania borders
the lake? Is an economist who works in France a French
Economist, even if he was born in Ireland?). Next, it is not
always clear whether an entity should be an individual or
a class (e.g. a judge might decide that physics is an indi-
vidual, because it is an instance of science). YAGO, how-
ever, in accordance with WordNet, sees abstract notions in
general as classes, because they can have subclasses (e.g.,
physics can have the subclass astrophysics). Further-
more, not everybody may agree on the definition of synsets
in WordNet (e.g., a palace is in the same synset as a castle
in WordNet). These cases of disputability are inherent even
to human-made ontologies. Thus, we can be extremely sat-
isfied with our results. Further note that these values mea-
sure just the potentially weakest point of YAGO, as all other
facts were derived non-heuristically.

It is difficult to compare YAGO to other information ex-
traction approaches, because the approaches usually differ
in the choice of relations and in the choice of the sources.
YAGO is tailored to Wikipedia and WordNet, but it comes

with a multitude of interconnected relations. Furthermore,
accuracy can usually be varied at the cost of recall. Ap-
proaches that use pattern matching (e.g. the Espresso Sys-
tem [20] or Leila [25]) typically achieve accuracy rates of
50%-92%, depending on the extracted relation. State-of-
the-art taxonomy induction as described in [23] achieves an
accuracy of 84%. KnowItAll [9] and KnowItNow [4] are re-
ported to have accuracy rates of 85% and 80%, respectively.

5.1.2 Size
Table 2 shows the number of facts for each relation in

YAGO. The overall number of ontological facts is about 5
million. This number is completed by the respective witness
facts and approximately 40 million context facts.

Table 2: Size of YAGO (facts)
Relation Domain Range # Facts
subClassOf class class 143,210
type entity class 1,901,130
context entity entity ∼40,000,000
describes word entity 986,628
bornInYear person year 188,128
diedInYear person year 92,607
establishedIn entity year 13,619
locatedIn object region 59,716
writtenInYear book year 9,670
politicianOf organization person 3,599
hasWonPrize person prize 1,016
means word entity 1,598,684
familyNameOf word person 223,194
givenNameOf word person 217,132

Table 3 shows the number of entities in YAGO.

Table 3: Size of YAGO (entities)
Relations 14
Classes 149,162
Individuals (without words) 907,462

It is not easy to compare the size of YAGO to other on-
tologies, because the ontologies usually differ in their struc-
ture, their relations and their domain. For informational
purposes, we list the number of entities and facts that are
reported for some of the most important other domain-
independent ontologies in Table 4.

Table 4: Size of other ontologies
Ontology Entities Facts
KnowItNow [4] N/A 25,860
KnowItAll [9] N/A 29,835
SUMO [18] 20,000 60,000
WordNet [10] 117,597 207,016
OpenCyc [17] 47,000 306,000
Cyc [17] 250,000 2,200,000

With the exception of Cyc (which is not publicly available),
the facts of these ontologies are in the hundreds of thou-
sands, whereas the facts of YAGO are in the millions.

5.2 Sample facts
Table 5 shows some sample facts of YAGO. In YAGO, the

word ”Paris”, can refer to 71 distinct entities. We list some
interesting ones. The football player Zinedine Zidane, e.g.,
is an instance of 24 different classes in our ontology. We list
some of them. In the table, type+subclass means that the

individual is an instance of a class that is a subclass of the
given class.

Table 5: Sample facts of YAGO
Zidane type+subclass football player
Zidane type Person from Marseille
Zidane type Legion d’honneur recipient
Zidane bornInYear 1972
”Paris” familyNameOf Priscilla Paris
”Paris” givenNameOf Paris Hilton
”Paris” means Paris, France
”Paris” means Paris, Texas
Paris, France locatedIn France
Paris, France type+subclass capital
Paris, France type Eurovision host city
Paris, France establishedIn -300

We also provide an interface to query YAGO in a SPARQL-
like fashion [28] 6. A query is a list of facts containing vari-
ables and regular expressions. Preprocessing ensures that
words in the query are considered in all their possible mean-
ings. The query algorithms are not in the scope of this
paper. Here, we only show some sample queries to illustrate
the applicability of YAGO (Table 6).

Table 6: Sample queries on YAGO
Query Result
When was ”Mostly Harmless” written? $y=1992
(Mostly Harmless,writtenInYear,$y)
Which humanists were born in 1879? $h=Albert Einstein
($h, type subClassOf*, humanist) and 2 more
($h, bornInYear, 1879)
Which locations in Texas and
Illinois bear the same name? $n=”Farmersville”
($t, locatedIn, Texas) and 121 more
($n, means, $t)
($n, means, $k)
($k, locatedIn, Illinois)

5.3 Enrichment experiment
To demonstrate how an application can add new facts to

the YAGO ontology, we conducted an experiment with the
knowledge extraction system Leila [25]. Leila is a state-of-
the-art system that uses pattern matching on natural lan-
guage text. It can extract facts of a certain given relation
from Web documents. We trained Leila for the headquar-
teredIn relation (as described in [26]). This relation holds
between a company and the city of its headquarters. We ran
Leila on a corpus of 150 news documents to extract pairs
of companies and headquarters. Each extracted pair is a
candidate fact (e.g. if Leila extracted the pair Microsoft
/ Redmond, then (Microsoft, headquarteredIn, Redmond)
is a candidate fact). Since the headquarteredIn relation
is not part of YAGO, no candidate fact is already present in
YAGO. For each candidate fact, the company and the city
have to be mapped to the respective individuals in YAGO.

To disambiguate the company name, we proceeded as fol-
lows: By the means relation, one can find out which indi-
viduals in YAGO the company name refers to. If exactly
one of these individuals is an instance of the class company,
we map the company name to this individual. If multiple
individuals are instances of the class company, we cannot be

6Available at http://www.mpii.mpg.de/~suchanek/yago

sure which one is meant. In this case, we abandon the can-
didate fact, because we aim at a high accuracy at the cost
of a potentially lower coverage (this did not happen in our
experiment). If no individual is a company, we introduce the
company name as a new individual for YAGO.

To disambiguate the city name, we proceed similarly. We
identify a set of potential individuals by the means relation
together with the constraint that the individual be a city.
If no individual is a city, we abandon the fact because we
assume that Wikipedia knows all major cities. If multi-
ple individuals are a city, we use a simple disambiguation
heuristic: We pick the city located in the state that is men-
tioned most frequently in the article. If no such city exists,
the fact is abandoned. This way, both the company and the
city get mapped to the respective YAGO individuals.

The confidence of the new fact is computed as a normal-
ization of the confidence score returned by Leila. Table
7 shows the number of company names and headquar-
teredIn facts contributed by Leila.

Table 7: Leila headquarteredIn facts
Abandoned candidates

because of an unknown city 32
because of an ambiguous city 33
because of an ambiguous company 0
Total 65

Inserted candidates
with a known company name 10
with a new company name 70
Total 80

In the above merging process, entities that are already
present in the ontology can help to disambiguate new en-
tities. Hence we assume that the more facts and entities
YAGO contains, the better it can be extended by new facts.
The better YAGO can be extended, the more facts it will
contain. This mutual contribution could constitute a posi-
tive re-enforcement loop, which could help future expansion.

6. CONCLUSION
In this paper, we presented YAGO, a large and extendable

ontology of high quality. YAGO contains 1 million entities
and 5 million facts – more than any other publicly available
formal ontology. As our evaluation shows, YAGO has a
near-human accuracy around 95%.

Our data model defines a clear semantics for YAGO. It
is decidable and it guarantees that the smallest ontology in
a set of equivalent ontologies is unique, so that there is a
canonical way to store a YAGO ontology.

We demonstrated how YAGO can be extended by facts
extracted from Web documents through state-of-the-art ex-
traction techniques. We observed that the more facts YAGO
contains, the easier it is to extend it by further facts.
We hypothesize that this positive feedback loop could fa-
cilitate the growth of the knowledge base in the future.
YAGO is available in different export formats, including
plain text, XML, RDFS and SQL database formats at
http://www.mpii.mpg.de/~suchanek/yago.

YAGO opens the door to numerous new challenges. On
the theoretical side, we plan to investigate the relationship
between OWL 1.1 and the YAGO model, once OWL 1.1 has
been fully developed. This might necessitate extensions or
additional semantic restrictions of the YAGO model. On
the practical side, we plan to enrich YAGO by further facts
that go beyond the current somewhat arbitrary relations

– including high confidence facts from gazetteers, but also
extracted information from Web pages. In particular, we
envisage to analyze and exploit the positive feedback loop
of data gathering. We hope that the availability of a huge,
clean, and high quality ontology can give new impulses to
the Semantic Web vision.

APPENDIX

A. PROOF OF THEOREM 1
Let F be a (finite) set of fact triples, as defined in Chapter
2.2. Let → be the rewrite system defined there (see [2] for a
reference on term rewriting). All rules of the rewrite system
are of the form F → F ∪ {f}, where F ⊆ F and f ∈ F .
Hence → is monotone. Furthermore, F is finite. Hence →
is finitely terminating. It is easy to see that if F → F ∪{f1}
and F → F ∪ {f2} for some F ⊆ F and f1, f2 ∈ F , then

F → F ∪ {f1} → F ∪ {f1, f2}
F → F ∪ {f2} → F ∪ {f1, f2}

Hence → is locally confluent. Since → is finitely termi-
nating, → is globally confluent and convergent. Thus, given
any set of facts F ⊆ F , the largest set DF with F →∗ DF

is unique and finite.

B. PROOF OF THEOREM 2
A canonical base of a YAGO ontology y is any base b of

y, such that there exists no other base b′ of y with |b′| < |b|.
This section will prove that, for a consistent YAGO ontol-
ogy, there exists exactly one such base. In the following, →
denotes the rewrite system and F denotes the set of facts
defined in Chapter 2.2.

Lemma 1: [No circular rules]
Let y be a consistent YAGO ontology, and {f1, ..., fn} a set
of facts. Then there are no sets of facts F1, ..., Fn, such that
that F1, ..., Fn ⊆ D(y) and

F1 ↪→ f1 with f2 ∈ F1

F2 ↪→ f2 with f3 ∈ F2

...
Fn ↪→ fn with f1 ∈ Fn

Proof: By analyzing all possible pairs of rule schemes
(1)...(5), one finds that the above rules must fall into one of
the following categories:

• All rules are instances of (5). In this case,
(c, subClassOf, c) ∈ D(y) for some common entity
c and hence y cannot be consistent.

• All rules are instances of (1). In this case,
(c, subRelationOf, c) ∈ D(y) for some common en-
tity c and hence y cannot be consistent.

• All rules are instances of (2). In this case,
(c, r, c) ∈ D(y) for some common entity c and relation
r and (r,type,acyclicTransitiveRelation)∈ D(y)
and hence y cannot be consistent.

• n = 2, one rule is an instance of (1), and the other an
instance of (2). In this case, (c, r, c) ∈ D(y) for some
common entity c and relation r and (r,type,acyclic-
TransitiveRelation)∈ D(y) and hence y cannot be
consistent.

Lemma 2: [No derivable facts in canonical base]
Let y be a consistent YAGO ontology and b a canonical base
of y and let B = range(b). Let f ∈ D(y) be a fact such that
D(y)\{f} → D(y). Then f 6∈ B.

Proof: Since b is a base, there is a sequence of sets of facts
B0, ..., Bn such that

B = B0 → B1 → B2 → . . . → Bn−1 → Bn = D(y)

This sequence is a sequence of rule applications, where each
rule has the form S ↪→ s, where S ⊆ F and s ∈ F . We
call S the premise of the rule and s its conclusion. We say
that a fact t contributes to a set of facts T in the sequence
B0, ...Bn, if there is a sequence of rule applications r1, ...rm,
so that t is in the premise of r1, the conclusion of r1 is in
the premise of r2 etc. and the conclusion of rm is in T .

Now assume f ∈ B. Since D(y)\{f} → D(y), there must
be a rule G ↪→ f with G ⊆ D(y)\{f}. Let i ∈ [0, n] be
the smallest index such that Bi ⊇ G. f cannot contribute
to G, because then there would exist circular rules in the
sense of the preceding lemma. Hence f does not contribute
to G. Then B\{f} is also a base, because the above rule
applications can be re-ordered so that f is derived from Bi.
Hence b cannot be a canonical base.

Now we are ready to prove Theorem 2:

Theorem 2: [Uniqueness of the Canonical Base]
The canonical base of a consistent YAGO ontology is unique.

Proof: Let b be a canonical base of a consistent YAGO
ontology y. Let B = range(b). We define the set

C := D(y) \ {f | D(y)\{f} → D(y)}

Intuitively speaking, C contains only those facts that cannot
be derived from other facts in D(y). By the previous lemma,
B ⊆ C. Assume B ⊂ C, i.e. there exists a fact f ∈ C,
f 6∈ B. Since C ⊆ D(y), f ∈ D(y). Since b is a base, there
exists a rule S ↪→ f for some S ⊆ D(y). Hence f 6∈ C, which
is a contradiction. Hence B = C and every canonical base
equals b.

This theorem entails that the canonical base of a YAGO
ontology can be computed by removing all facts that can be
derived from other facts in the set of derivable facts.

C. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: extracting

relations from large plain-text collections. In ICDL,
2000.

[2] F. Baader and T. Nipkow. Term rewriting and all
that. Cambridge University Press, New York, NY,
USA, 1998.

[3] R. C. Bunescu and M. Pasca. Using encyclopedic
knowledge for named entity disambiguation. In EACL,
2006.

[4] M. J. Cafarella, D. Downey, S. Soderland, and
O. Etzioni. KnowItNow: Fast, scalable information
extraction from the web. In EMNLP, 2005.

[5] N. Chatterjee, S. Goyal, and A. Naithani. Resolving
pattern ambiguity for english to hindi machine
translation using WordNet. In Workshop on Modern
Approaches in Translation Technologies, 2005.

[6] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In ICDE, 2005.

[7] W. W. Cohen and S. Sarawagi. Exploiting dictionaries
in named entity extraction: combining semi-markov

extraction processes and data integration methods. In
KDD, 2004.

[8] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A framework and graphical
development environment for robust NLP tools and
applications. In ACL, 2002.

[9] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale information extraction in
KnowItAll. In WWW, 2004.

[10] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[11] J. Graupmann, R. Schenkel, and G. Weikum. The
spheresearch engine for unified ranked retrieval of
heterogeneous XML and web documents. In VLDB,
2005.

[12] I. Horrocks, O. Kutz, and U. Sattler. The even more
irresistible SROIQ. In KR, 2006.

[13] W. Hunt, L. Lita, and E. Nyberg. Gazetteers,
wordnet, encyclopedias, and the web: Analyzing
question answering resources. Technical Report
CMU-LTI-04-188, Language Technologies Institute,
Carnegie Mellon, 2004.

[14] G. Ifrim and G. Weikum. Transductive learning for
text classification using explicit knowledge models. In
PKDD, 2006.

[15] D. Kinzler. WikiSense - Mining the Wiki. In
Wikimania, 2005.

[16] S. Liu, F. Liu, C. Yu, and W. Meng. An effective
approach to document retrieval via utilizing wordnet
and recognizing phrases. In SIGIR, 2004.

[17] C. Matuszek, J. Cabral, M. Witbrock, and
J. DeOliveira. An introduction to the syntax and
content of Cyc. In AAAI Spring Symposium, 2006.

[18] I. Niles and A. Pease. Towards a standard upper
ontology. In FOIS, 2001.

[19] N. F. Noy, A. Doan, and A. Y. Halevy. Semantic
integration. AI Magazine, 26(1):7–10, 2005.

[20] P. Pantel and M. Pennacchiotti. Espresso: Leveraging
generic patterns for automatically harvesting semantic
relations. In ACL, 2006.

[21] M. Ruiz-Casado, E. Alfonseca, and P. Castells.
Automatic extraction of semantic relationships for
WordNet by means of pattern learning from
Wikipedia. In NLDB, pages 67–79, 2006.

[22] S. Russell and P. Norvig. Artificial Intelligence: a
Modern Approach. Prentice Hall, 2002.

[23] R. Snow, D. Jurafsky, and A. Y. Ng. Semantic
taxonomy induction from heterogenous evidence. In
ACL, 2006.

[24] S. Staab and R. Studer. Handbook on Ontologies.
Springer, 2004.

[25] F. M. Suchanek, G. Ifrim, and G. Weikum. Combining
linguistic and statistical analysis to extract relations
from web documents. In KDD, 2006.

[26] F. M. Suchanek, G. Ifrim, and G. Weikum. LEILA:
Learning to Extract Information by Linguistic
Analysis. In Workshop on Ontology Population at
ACL/COLING, 2006.

[27] M. Theobald, R. Schenkel, and G. Weikum. TopX and
XXL at INEX 2005. In INEX, 2005.

[28] W3C. Sparql, 2005. retrieved from
http://www.w3.org/TR/rdf-sparql-query/.

