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Overview

• Application Areas
• Rule-Based Approaches
• Statistical Approaches

� Naive Bayes
� Vector-Based Approaches

• Rocchio
• K-nearest Neighbors
• Support Vector Machine

• Evaluation Measures
• Evaluation Corpora
• N-Gram Based Classification in the Memphis Project
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Example Application Scenario

• Bertelsmann “Der Club” uses text classification to 
assign incoming emails to a category, e.g.
� change of bank connection
� change of address
� delivery inquiry
� cancellation of membership

• Emails are forwarded to the responsible editor
• Advantages

� decrease of response time
� more flexible resource management
� happy customers �
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Other Application Areas

• Spam filtering
• Language identification
• News topic classification
• Authorship attribution
• Genre classification
• Email surveillance
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Rule-based Classification Approaches

• Use Boolean operators AND, OR and NOT
• Example rule

� if an email contains “address change” or “new address”, assign 
it to the category “address changes”

• Representation as decision tree
� nodes represent rules that route the document to a subtree
� documents traverse the tree top down
� leafs represent categories
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Rule-based Classification Approaches

• Advantages
� transparent
� easy to understand
� easy to expand
� easy to modify

• Disadvantages
� time consuming and complex
� not adaptive
� intelligence is not in the system but with the system designer
� only absolute assignment, no confidence values

• Statistical classification approaches solve some of 
these disadvantages
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Statistical Classification Approaches

• Advantages
� work with probabilities
� adaptive

• Disadvantage
� require a set of training documents annotated with a category

• Most popular
� Naive Bayes
� Rocchio
� K-nearest neighbor
� Support Vector Machines (SVM)
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Linguistic Preprocessing

• Remove HTML/XML tags and stop words
• Perform word stemming
• Replace all synonyms of a term with a single 

representative
� e.g. { car, machine, automobile } � car

• Composites analysis (for German texts)
� split “Hausboot” into “Haus” and “Boot”

• Set of remaining words is called “feature space”

• Importance of linguistic preprocessing increases with
� number of categories
� lack of training data
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Naive Bayes

• Based on Thomas Bayes theorem from the 18th century
• Idea: Use the training data to estimate the probability of 

a new, unclassified document                          belonging 
to each class

• This simplifies to
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Naive Bayes

• The following estimates can be done using the training 
documents

where      
� is the total number of training documents
� is the number of training documents for category 
� is the number of times word   occurred within documents 

of category 
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Naive Bayes

• Result is a ranking of categories
• Adaptivity

� probabilities are updated with each correctly classified 
document

• Naive Bayes is used very effectively in adaptive spam 
filters

• But why “naive”?
� assumption of word independence
� generally not true for word appearances in documents

• Conclusion
� Text classification can be done by just counting words
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Documents as Vectors

• Some classification approaches are based on vector 
models 

• Documents have to be presented as vectors
• Example

� the vector space for two documents consisting of “I walk” and  
“I drive” consists of three dimension, one for each unique word

� “I walk” � (1, 1, 0)
� “I drive” � (1, 0, 1)

• Collections of documents are represented by a word-
by-document matrix  where each entry 
represents the occurrences of a word in a document

• is the weight of word i in document k 
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Weight of Words in Document Vectors

• Boolean weighting

• Word frequency weighting

• tf.idf weighting

� considers distribution of words over the training corpus
� is the number of training documents that contain at least 

one occurrence of word i
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Dimensionality Reduction

• Large training corpora contain hundreds of thousands 
of unique words, even after linguistic preprocessing

• Result is a high dimensional feature space
• Processing is extremely costly in computational terms
• Unreliable results because of insufficient training data
• Use feature selection to remove non-informative words 

from documents
� document frequency thresholding
� information gain
� -statistic

2χ
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Document Frequency Thresholding

• Compute document frequency for each word in the 
training corpus

• Remove words whose document frequency is less than 
predetermined threshold

• These words are non-informative or not influential for 
classification performance
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Information Gain

• Measure for each word how much its presence or 
absence in a document contributes to category 
prediction

• Remove words whose information gain is less than 
predetermined threshold
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Information Gain

• total no. of documents
• no. of docs in category 
• no. of docs containing 
• no. of docs not containing 
• no. of docs in category     containing 
• no. of docs in category     not containing w
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-Statistic

• Measure dependence between words and categories

• Define measure as

• Result is a word ranking
• Select top section as feature set
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Rocchio

• Uses centroid vectors to represent a category
• Centroid vector is the average vector of all document 

vectors of a category
• Centroid vectors are calculated in the training phase
• To classify a new document, just calculate its distance 

to the centroid vector of each category
• Use cosine similarity as distance measure
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Rocchio

Centroid Vectors

Document Vector
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Rocchio

• Advantages
� fast training phase
� fast classification

• Disadvantages
� precision drops with increasing number of categories
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K-nearest Neighbors

• Similar to Rocchio
• Instead of a centroid vector, check the k nearest 

neighbor vectors of a new document vector
• Value of k determined empirically
• Define “nearest” using a similarity measure, e.g. 

Euclidean distance or cosine similarity



Language Technology I - An Introduction to Text Classification - WS 2007/2008

STEFFEN  2007 

23

1-nearest Neighbor

• Assign new document the category of its nearest 
neighbor
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K-nearest Neighbors

• Majority voting scheme

k=1: majority for red

k=5: majority for green

k=10: even votes for 
both
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K-nearest Neighbors

• Weighted sum voting scheme for k = 5
• Neighbors are given weights according to their nearness

8

2

2

6

1

weighted sum for red: 14

weighted sum for green: 5
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K-nearest neighbors

• Advantages
� no training phase required
� good scalability if number of categories increases

• Disadvantages
� large models for large training sets
� requires a lot of memory
� slow performance
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Support Vector Machine

• Find a decision surface (hyperplane) in the vector 
space that separates the document vectors of two 
categories

• Usually, there are many possible separating 
hyperplanes

• Find the “best” one: maximum-margin hyperplane
� equal distance to both document sets
� margin between hyperplane and document sets is maximal
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Support Vector Machine

• More than one hyperplane separates the document 
vectors of each category
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Support Vector Machine

• Find the maximum-margin hyperplane
• Vectors at the margins are called support vectors
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Support Vector Machine

• Advantages
� only the support vectors are required to classify new 

documents
� small models
� feature selection can be omitted
� no overfitting

• when given too much training data, other classification approaches 
only return a correct classification for training documents

• main advantage of SVM over other vector-based approaches

• Disadvantages
� very complex training (optimization problem)
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Classification Evaluation

• Possible results of a binary 
classification

true negativesfalse negativessystem NO

false positives true positivessystem YES

truly NOtruly YES

TP

TN

FPFNtruly system
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Evaluation Measures

• Precision
� percentage of documents correctly identified as belonging to 

the class

• Recall
� percentage of documents found belonging to the class
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Evaluation Measures

• Precision and recall are misleading when examined 
alone

• There is always a tradeoff between precision and recall
� Increase in recall often comes with a decrease in precision
� If precision and recall are tuned to have the same value, it is 

called the break-even point
• F-Measure combines both precision and recall in one 

value

� � allows different weighting of precision and recall
� for equal weighting, � = 1
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Evaluation Corpora

• To compare different classification approaches, a 
common set of data is required

• Popular evaluation corpora
� Reuters-21578 collection
� 20-newsgroup-corpus

• Evaluation corpora are usually split up into a training 
corpus and a test corpus

• You can score top precision and recall values if you test 
your classification approach on the training data!
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Reuters-21578 Collection

• Collected from the Reuters newswire in 1987
• Contains 12902 news articles from 135 different 

categories
• Documents have up to 14 categories assigned
• Average is 1.24 categories per document
• Default split

� 9603 training documents
� 3299 test documents
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20-Newsgroups-Corpus

• Consists of newsgroup articles from 20 different 
newsgroups

• Some newsgroups closely related, e.g. alt.atheism and 
talk.religion.misc

• Contains 20.000 articles, 1000 articles for each 
newsgroup

• Corpus size: 36 MB
• Average size of article: 2 KB
• Newsgroup header of articles has been removed
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What is the best classification approach?

• This depends on the application scenario and the data
• “Hard” facts are easy to model with rules
• “Soft” facts are better modeled with statistic
• If there is few or no training data, statistic doesn’t work
• Among statistical approaches the ranking is

� SVM
� K-nearest neighbors
� Rocchio
� Naive Bayes

• In real life, rule-based and statistical approaches are 
often combined to get the best results
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N-Gram Based Multilingual and Robust 
Document Classification in the MEMPHIS 

Project
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Memphis Overview
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The MediAlert Service

• Domain: book announcements
• Sources: internet sites of book shops and publishers in 

English, German and Italian
• Classification task: assign topic to book announcement

• Classification Challenges:
� Informal texts with open-ended vocabulary
� Content in several languages
� Spelling mistakes and missing case distinction

� Biographies
� Film
� Music
� Sports

� Travel
� Health
� Food
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Character-Level N-Grams

• MEMPHIS classifier based on character-level n-grams 
instead of terms

• Example
� “Well, this is an example!”
� 3-grams: “Wel”  “ell”  “ll,”  “l, ”  “, t”  “ th”  “thi”  “his” … “le!”

• Advantages of character-level n-grams
� No linguistic preprocessing necessary
� Language independent
� Very robust
� Less sparse data
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Model Training

• Training requires a corpus of documents 
• Each training document must be tagged with one or 

more categories
• For each category, a statistical model is created 
• Each model contains conditional probabilities based on 

character-level n-gram frequencies counted in training 
documents

• Models are independent of each other
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Model Training

• Document is a character sequence

• Maximum Likelihood Estimate:

• Example:
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Document Classification

• Based on Bayesian decision theory
• For each model, predict probability of test document 

using the chain rule of probability:

• Approximation in n-gram models:

• Result is a ranking of categories derived from the 
probability of the test document in each model
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Sparse Data Problem

• N-grams in test documents that are unseen in training 
get zero probability 

• As a consequence, probability for test document 
becomes zero

• No matter how much training data, there can always be 
unseen n-grams in some test documents

• Solution: Probability Smoothing
� Assign non-zero probability to unseen n-grams
� To keep a valid model, reduce the probability of known n-grams 

and reserve some room in the probability space for unseen n-
grams
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Smoothing Techniques

• Several smoothing techniques have been adapted for 
character-level n-grams that yield backoff models and 
interpolated models:
� Katz Smoothing
� Simple Good-Turing Smoothing
� Absolute Smoothing 
� Kneser-Ney Smoothing
� Modified Kneser-Ney Smoothing
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Whitespace Stripping

• Non-linguistic preprocessing step
• Strip all whitespaces
• Convert all characters to lower case
• To preserve word border information, first character is 

always upper case
• Example: 

� LIFE STORIES: Profiles from the New Yorker
� LifeStories:ProfilesFromTheNewYorker

• Improves average F -Measure by up to 5%
• Larger models

1
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Linguistic Resources

• Amazon corpora
� 1000 docs per category
� English (13MB) and German (10MB)
� Acquired using the Amazon web service

• Other English corpora:
� Randomhouse.com (3000 docs, 4 MB)
� Powells.com (8000 docs, 7MB)

• Other German corpora:
� Bol.de (1200 docs, 1 MB)
� Buecher.de (2300 docs, 2 MB)
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Evaluation

• Classification parameters 
� Smoothing technique
� N-gram length
� Mono-lingual vs multi-lingual models

• Setting:
� Split corpus randomly into training docs (80%) and test docs 

(20%)
� Performance as average F -Measure of 10 runs1
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Smoothing Techniques
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Mono-Lingual Models
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Multi-Lingual Models
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Cross-Site Evaluation
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Conclusions

• Classification using character-level n-grams performs 
very good in assigning topics to multi-lingual, informal 
documents

• Approach is robust enough to allow multi-lingual models
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