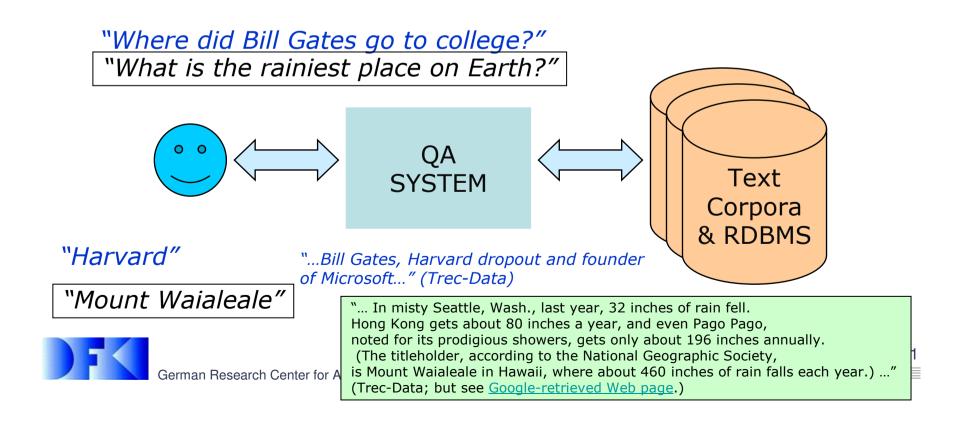


Question Answering

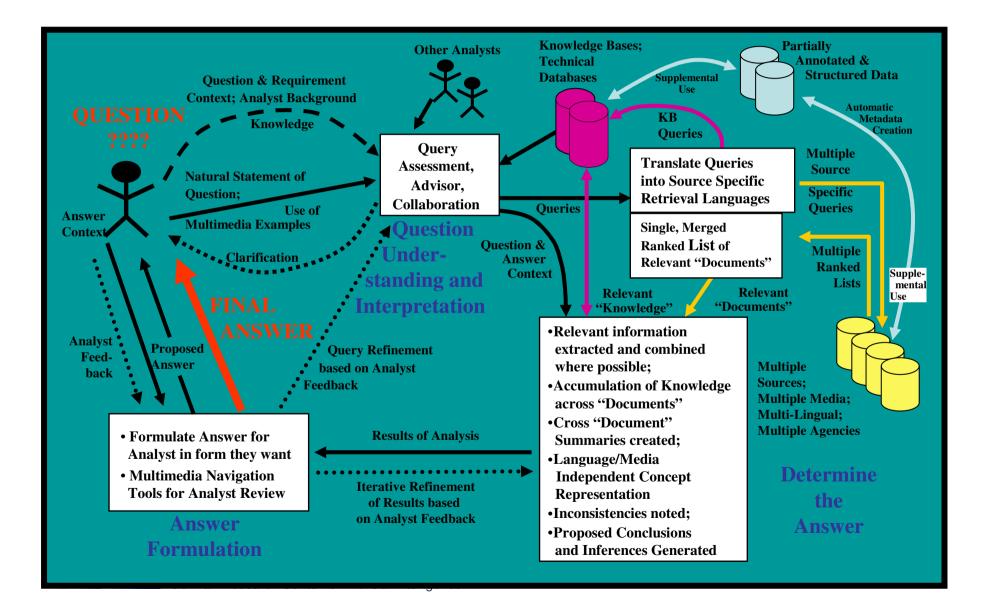
Günter Neumann

Language Technology Lab at DFKI

Saarbrücken, Germany



LT-Lab Open-domain Question Answering



- ☆ Input: a question in NL; a set of text and database resources
- ☆ Output: a set of possible answers drawn from the resources

LT-Lab Intelligent information analysts

- \Rightarrow QA systems should be able to:
 - Timeliness: answer question in real-time, instantly incorporate new data sources.
 - Accuracy: detect no answers if none available.
 - Usability: mine answers regardless of the data source format, deliver answers in any format.
 - Completeness: provide complete coherent answers, allow data fusion, incorporate capabilities of reasoning.
 - Relevance: provide relevant answers in context, interactive to support user dialogs.
 - Credibility: provide criteria about the quality of an answer

- ☆ Open-domain questions & answers
- \Rightarrow Information overload
 - How to find a needle in a haystack?
- ☆ Different styles of writing (newspaper, web, Wikipedia, PDF sources,...)
- ☆ Multilinguality
- ☆ Scalability & Adaptibility

"The greatest problem of today is how to teach people to ignore the irrelevant, how to refuse to know things, before they are suffocated. For too many facts are as bad as non at all". (W.H. Auden)

- \Rightarrow Why is there an issue with regards to information access?
- \Rightarrow Why do we need support in find answers to questions?
- \Rightarrow IA increasingly difficult when we have consider issues such as:
 - the size of collection
 - the presence of duplicate information
 - the presence of misinformation (false information/ inconsistencies)

LT-Lab What is Question Answering ?

- ☆ Natural language questions, not queries
- \Rightarrow Answers, not documents (containing possibly the answer)
- ☆ A resource to address 'information overload'?
- $\stackrel{\text{\tiny theta}}{\longrightarrow}$ Most research so far has focused on fact-based questions:
 - "How tall is Mount Everest?",
 - "When did Columbus discover America?",
 - "Who was Grover Cleveland married to?".
- \Rightarrow Current focus is towards complex questions
 - List, definition, temporally restricted, event-oriented, why-related, ...
 - Contextual questions like "How far is it from here to the Cinestar?"
- \Rightarrow Also support information-seeking dialogs:
 - "Do you mean President Cleveland?"
 - "Yes".
 - "Francis Folsom married Grover Cleveland in 1886."
 - "What was the public reaction to the wedding?"

- ☆ Information Retrieval
 - Retrieve relevant documents from a set of keywords; search engines
- \Rightarrow Information Extraction
 - Template filling from text (e.g. event detection); e.g. TIPSTER, MUC
- ☆ Relational QA
 - Translate question to relational DB query; e.g. LUNAR, FRED

- ☆ Traditional QA Systems (TREC)
 - Question treated like keyword query
 - Single answers, no understanding
 - **Q**: Who is prime minister of India?
 - <find a person name close to *prime*, *minister*, *India* (within 50 bytes)>
 - A: John Smith is not prime minister of India

• Future QA Systems

- System understands questions
- System understands answers and interprets which are most useful
- System produces sophisticated answers (list, summarize, evaluate)

What other airports are near Niletown?

Where can helicopters land close to the embassy?

- Acquiring high-quality, high-coverage lexical resources
- ☆ Improving document retrieval
- ☆ Improving document understanding
- \Rightarrow Expanding to multi-lingual corpora
- ☆ Flexible control structure
 - "beyond the pipeline"
- ☆ Answer Justification
 - Why should the user trust the answer?
 - Is there a better answer out there?

☆Question: "When was Wendy's founded?"

\Rightarrow Passage candidate:

 "The renowned Murano glassmaking industry, on an island in the Venetian lagoon, has gone through several reincarnations since it was founded in 1291. Three exhibitions of 20th-century Murano glass are coming up in New York. By Wendy Moonan."

Answer: 20th Century

LT-Lab Predicate-argument structure

- ☆ Q336: When was Microsoft established?
- ☆ Difficult because Microsoft tends to establish lots of things...

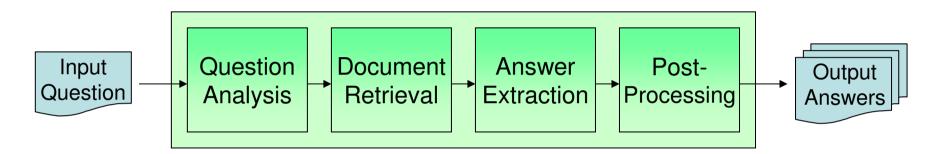
<u>Microsoft</u> plans to <u>establish</u> manufacturing partnerships in Brazil and Mexico in <u>May</u>.

- ☆ Need to be able to detect sentences in which `Microsoft' is object of `establish' or close synonym.
- \Rightarrow Matching sentence:

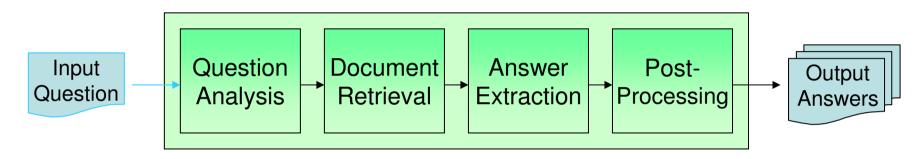
Microsoft Corp was founded in the US in 1975, incorporated in 1981, and established in the UK in 1982.

- ☆ Question: What is the occupation of Bill Clinton's wife?
 - No documents contain these keywords plus the answer
- \Rightarrow Strategy: decompose into two questions:
 - Who is Bill Clinton's wife? = X
 - What is the occupation of X?

LT-Lab Brief history of QA Systems

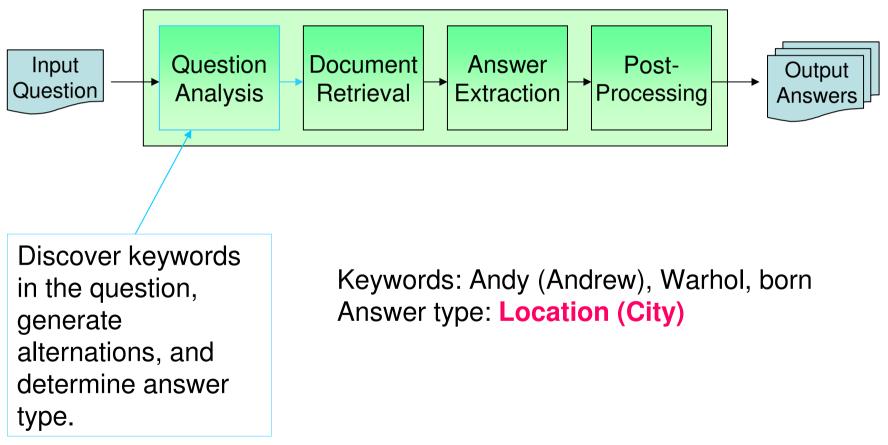

- The focus in the beginning of QA research was on closed-domain QA for different applications:
 - Database: NL front ends to databases
 - BASEBALL (1961), LUNAR (1973)
 - AI: dialog interactive advisory systems
 - SHRLDU (1972), JUPITER (2000)
 - NLP: story comprehension
 - BORIS (1972)
 - NLP: retrieved answers from an encyclopedia
 - MURAX (1993)
- \Rightarrow At late 90th the focus shifted towards open-domain QA
 - TREC's QA track (began in 1999)
 - Clef crosslingual QA track (since 2003)

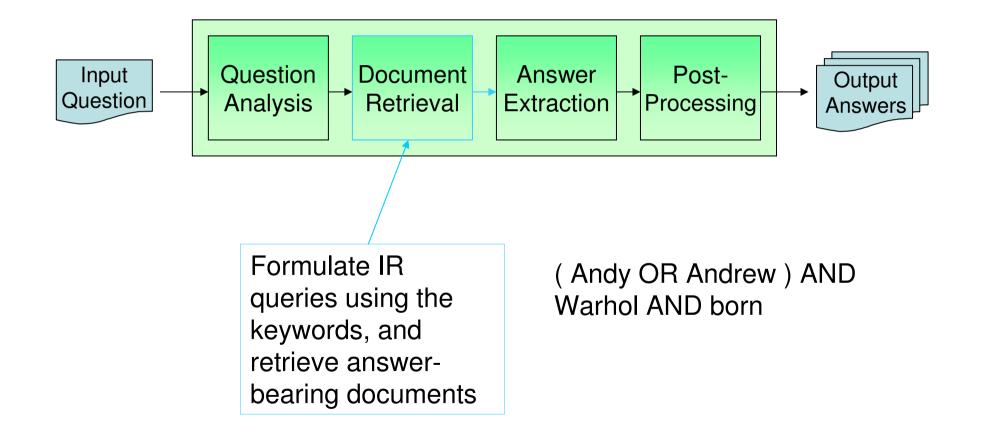
- \Rightarrow Open domain
 - No restrictions on the domain and type of question
 - No restrictions on style and size of document source
- \Leftrightarrow Combines
 - Information retrieval, Information extraction
 - Text mining, Computational Linguistics
 - Semantic Web, Artificial Intelligence
- \Rightarrow Cross-lingual ODQA
 - Express query in language X
 - Answer from documents in language Y
 - Eventually translate answer in Y to X



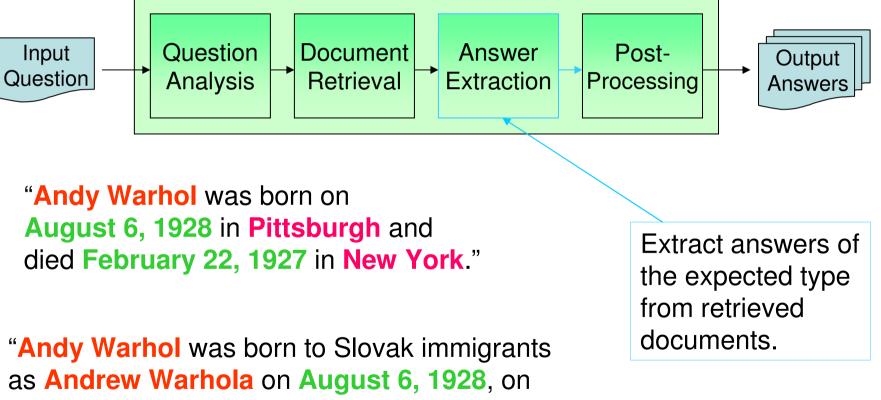
☆ A sequence of discrete modules cascaded such that the output of the previous module is the input to the next module.

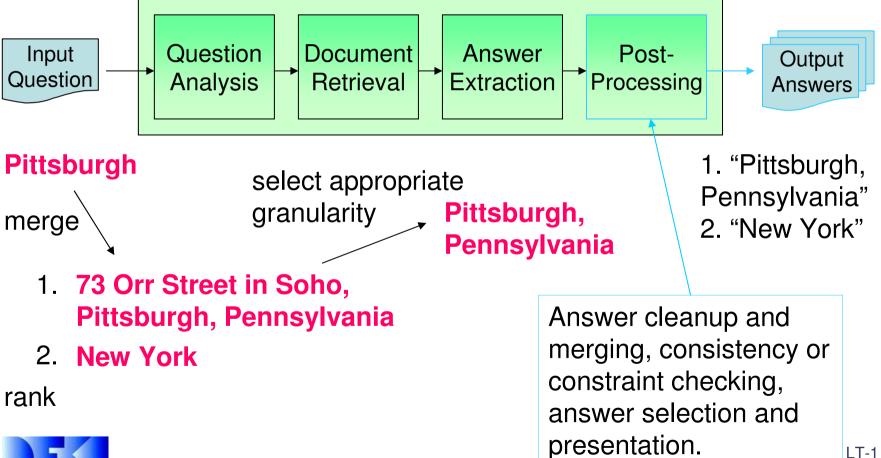
"Where was Andy Warhol born?

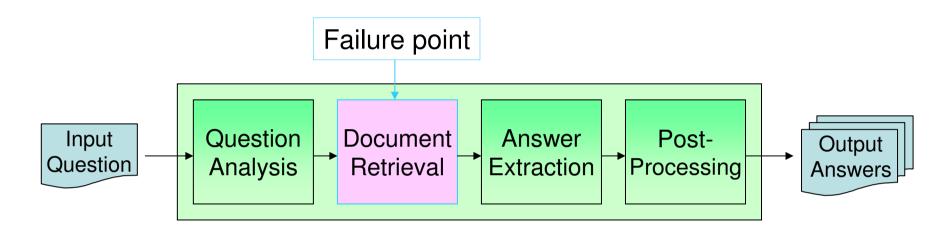



LT-1

100


"Where was Andy Warhol born?




73 Orr Street in Soho, Pittsburgh, Pennsylvania "

German Research Center for Artificial Intelligence

- ☆ A pipelined QA system is only as good as its weakest module
- ☆ Poor retrieval and/or query formulation can result in low ranks for answer-bearing documents, or no answer-bearing documents retrieved

☆ What is TREC?

- Text REtrieval Conference is a series of workshops aim at developing research on technologies for IR.
- started: 1992, Sponsored by: NIST, DARPA
- TREC-10 (2001), no. of tracks: 6, no. participants: 87
- \Rightarrow What is TREC QA track?
 - focuses on the evaluation of systems, in a competition-based manner, that answer questions in unrestricted domains.
 - started: TREC-8 (1999), no. participants: 20
 - Homepage: http://trec.nist.gov/data/qamain.html

- ☆ QA Track first introduced at TREC 8 (Voorhees, 1999)
 - 200 fact-based short-answer questions
 - Questions mainly back formulated from documents
 - Answers could be 50-byte or 250-bytes snippets
 - 5 answers could be returned for each question
 - Best systems could answer over 2/3 of the questions (Moldovan et al., 1999; Srihari and Li, 1999).
- \Rightarrow TREC 10 (Voorhees, 2001) introduced:
 - List questions such as "Name 20 countries that produce coffee"
 - Best 3 systems: 0.76%, 0.45%, 0.34% average accuracy (computed as the number of distinct instances divided by the target number instances)
 - Average for all 9 systems: 0.33 %
 - Questions which don't have an answer in the collection (NIL answers)

- \Rightarrow In TREC 11 (Voorhees, 2002):
 - Answers had to be exact
 - Only one answer could be returned per question
 - Best 3 systems: 83%, 58%, 54.2%, accuracy on 500 questions
 - Next systems: 38.4%, 36.8%, 35,8%, 28.4%, ...
- ☆ TREC 12 (Voorhees, 2003) Introduced definition questions:
 - Define a target such as "aspirin" or "Aaron Copland"
 - A definition should contain a number of important facts (vital nuggets)
 - Can also include other associated information (non-vital nuggets)
 - Evaluated using a length based precision metric which penalizes long answers containing few nuggets.
 - Performance for the best systems: 0.555, 0.473, 0.461, 0.442, 0.338, 0.318
 - Final scores (fact, list, def questions) for best systems:
 - 0.559, 0479, 0.363, 0.313, 0.266, 0.256

- ☆ TREC 13 (Voorhees, 2004) combines the three question types into scenarios around targets. For instance
 - Target: Hale Bopp Comet
 - Factoid: When was the comet discovered?
 - Factoid: How often does it approach the earth?
 - List: In what countries was the comet visible on it's last return?
 - Other: Tell me anything else not covered by the above questions
- ☆ Performance of best systems:
 - 0.601, 0.545, 0.386, 0.278

TREC 2005

- ☆ Questions were based around 75 targets
 - 19 people
 - 19 organizations
 - 19 things
 - 18 events
- \Rightarrow The series of targets contained a total of:
 - 362 factoid questions
 - 93 list questions
 - 75 (one per target) other questions
- All answers had to be with reference to a document in the AQUAINT collection of newswire texts.

Example Scenarios

☆ AMWAY

- F: When was AMWAY founded?
- F: Where is it headquartered?
- F: Who is president of the company
- L: Name the officials of the company
- F: What is the name "AMWAY" short for?
- O:
- \Rightarrow return of Hong Kong to Chinese sovereignty
 - F: What is Hong Kong's population?
 - F: When was Hong Kong returned to Chinese sovereignty?
 - F: Who was the Chinese President at the time of the return?
 - F: Who was the British Foreign Secretary at the time?
 - L: What other countries formally congratulated China on the return?
 - O:

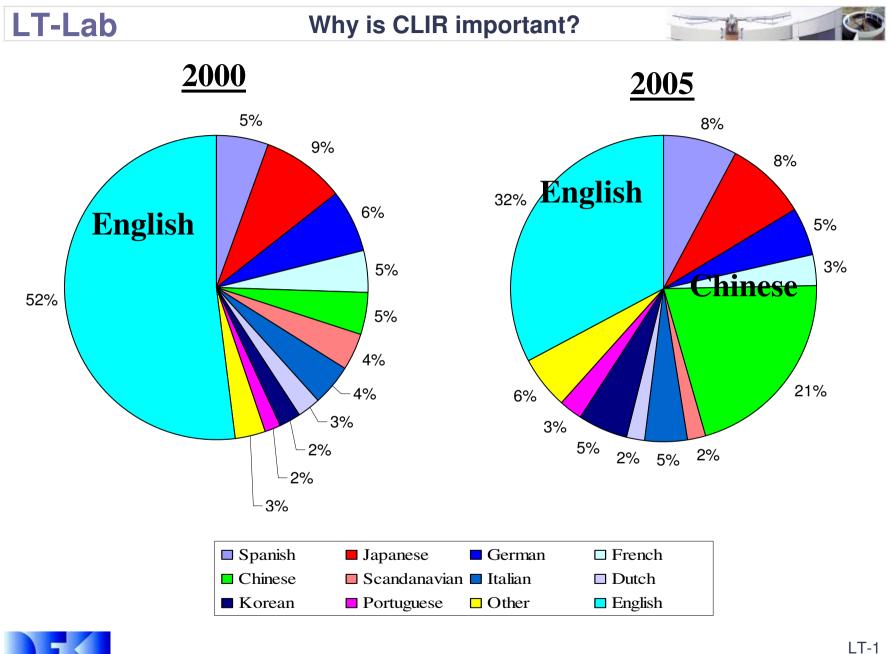
LT-Lab Example Scenarios

☆ Shiite

- F: Who was the first Imam of the Shiite sect of Islam?
- F: Where is his tomb?
- F: What was this person's relationship to the Prophet Mohammad?
- F: Who was the third Imam of Shiite Muslims?
- F: When did he die?
- F: What portion of Muslims are Shiite?
- L: What Shiite leaders were killed in Pakistan?
- O:

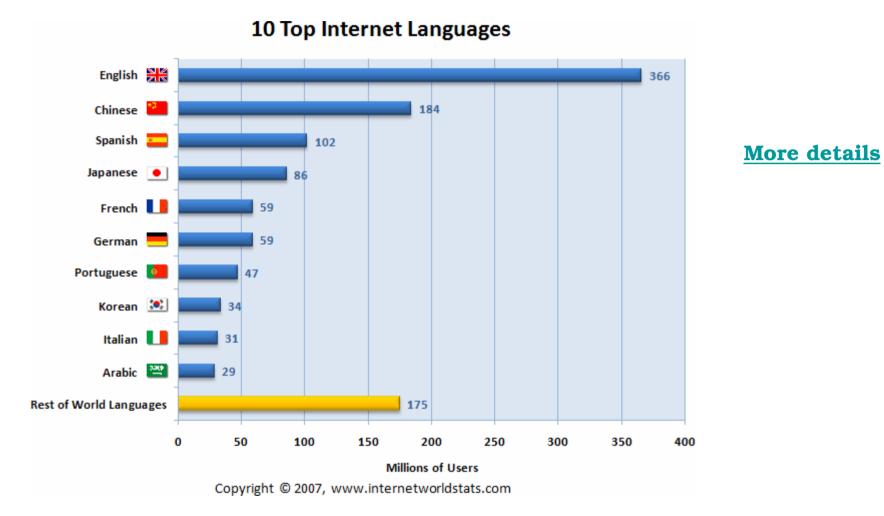
- \Rightarrow For factoid questions the metric is accuracy
 - Only exact supported answers and correct NIL responses are counted
- \approx For list questions the metric is F-measure ($\beta = 1$)
 - Only exact supported answers are counted
 - Set of correct answers (for recall purposes) is the union of all correct answers across all submitted runs plus any instances found during question development.
- \approx For other questions the metric F-measure ($\beta = 3$)
 - Recall is the proportion of vital nuggets returned
 - Precision is a length based penalty, where each valid nugget allows 100 non-whitespace characters to be returned.
- \Rightarrow These are combined to give a weighted score per target
 - Weighted Score = 0.5xFactoid + 0.25xListAvgF + 0.25xOtherAvgF
- \Rightarrow Performance of the best systems:
 - $\quad 0.543, \, 0.464, \, 0.246, \, 0.241, \, 0.222, \, 0.205, \, 0.201, \, 0.187$

- \Rightarrow Trec 2006 and 2007 QA main tracks
 - Quite similar to Trec 2005
 - More difficult questions whose answering required more reasoning
 - Additional text corpora, e.g., blogs in case of 2007
- \Rightarrow Interactive QA ciQA
 - Home page: <u>http://www.umiacs.umd.edu/~jimmylin/ciqa/</u>
 - Idea: given a information need in form of a template and a short NL description, provide a web-based QA system that can be used to do QA cycles
 - Template: What evidence is there for transport of [drugs] from [Bonaire] to [the United States]?
 Narrative: The analyst would like to know of efforts made to discourage narco traffickers from using Bonaire as a transit point for drugs to the United States. Specifically, the analyst would like to know of any efforts by local authorities as well as the international community.
 - Systems are evaluated by organizers by using a system for 5 minutes to process such a information need



Find documents written in any language

- Using queries expressed in a single language



German Resea

Source: Global Reach

LT-Lab http://www.internetworldstats.com/stats7.htm

- ☆ Cross Language Evaluation Forum (CLEF)
 - CLIR using European languages.
 - Bulgarian, Danish, Dutch, English, Finnish, French, German, Italian, Portuguese, Spanish, Swedish, Russian
 - <u>http://clef.iei.pi.cnr.it/</u>
- ☆ NTCIR (NII-NACSIS Test Collection for IR Systems) Project
 - CLIR in Asian Languages
 - Chinese, Japanese, and Korean
 - <u>http://research.nii.ac.jp/ntcir/index-en.html</u>

Similar task as TREC QA but with Questions and documents in different languages.

\Leftrightarrow CLEF

- Multiple Languages QA
 - 2003 preliminary task
 - 2004, 2005, 2006, 2007
- ☆ NTCIR
 - Question Answering Challenge:
 - NTCIR 3 (QAC1 Oct 2001-Oct 2002)
 - NTCIR 4 (QAC2 Apr 2003 June 2004)
 - NTCIR 5 (QAC3 Nov 2004 June 2005)

	2003	2004	2005	2006	2007
Target languages	3	7	8	9	10
Collections	News 1994		+News 1995		+Wikipedia Nov. 2006
Type of questions	200 Factoid		+ temporal restrictions + Definitions	-Type of questions + Lists	+ Linked questions + Closed lists
Supporting information	Doc.	Doc.	Doc.	Snippet	Snippet
Pilots and exercises		-Temporal restrictions - Lists		-AVE - RealTime - WiQA	- AVE - QAST

LT-Lab Cle

- FACTOID (150): loc, mea, org, oth, per, tim
- DEFINITION (40): per, org, object, oth
 - Person: Who is Josef Paul Kleihues?
 - Object: What is a router?
 - Other: What is a tsunami?
- LIST (10): "Name works by Tolstoy."
- Temporally restricted (40): by date, by period, by event
- NIL questions (without known answer in the collection
- Input format: question type (F, D, L) not indicated

- \Rightarrow Closed lists:
 - Who were the components of the Beatles?
 - Who were the **last three** presidents of Italy?
- ☆ Linked questions
 - Topic: Otto von Bismarck
 - Who was called the "Iron-Chancellor"?
 - When was he born?
 - Who was his first wife?
 - Topics
 - Person or Event
 - Not provided to participants
 - Only a portion of the questions (from 15% depending on the languages)

• Clef 2006:

LT-Lab

- Multiple answers: from one to ten *exact* answers per question
- *exact* = neither more nor less than the information required
- each answer has to be supported by
 - docid
 - one to ten text snippets justifying the answer (substrings of the specified document giving the actual context)
- Clef 2007:
 - News articles
 - Wikipedia dump from November 2006 (→ caused critical decrase of performance)

Clef 2007: Activated Tasks

(at least one registered participant)

- 10 Source languages (11 in 2006, 10 in 2005)
- 9 Target languages (8 in 2006, 9 in 2005)

S	BG	DE	EN	ES	FR	IN	IT	NL	PT	RO
T										
BG										
DE										
EN										
ES										
FR										
IT										
NL										
PT										
RO										

LT-Lab Activated Tasks

- questions were not translated in all the languages
- **Gold Standard**: questions in multiple languages only for tasks were there was at least one registered participant

	MONOLINGUAL	CROSS-LINGUAL	TOTAL
CLEF 2003	3	5	8
CLEF 2004	6	13	19
CLEF 2005	8	15	23
CLEF 2006	7	17	24
CLEF 2007	8	29	37

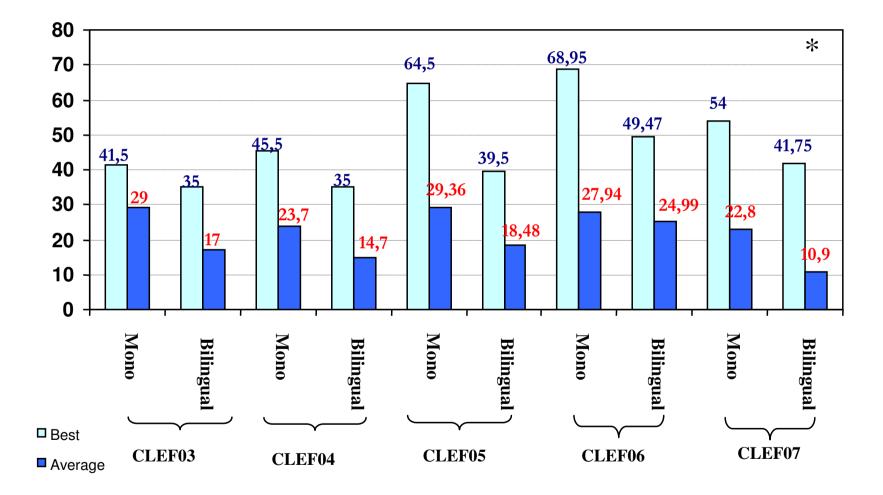
	America	Europe	Asia	TOTAL	Registered participants	New comers	Veterans
CLEF 2003	3	5	-	8			
CLEF 2004	1	17	-	18 (+125%)	22	13	5
CLEF 2005	1	22	1	24 (+33%)	27	9	15
CLEF 2006	4	24	2	30 (+25%)	36	10	20
CLEF 2007				22 (-26%)	29	8	14

LT-1

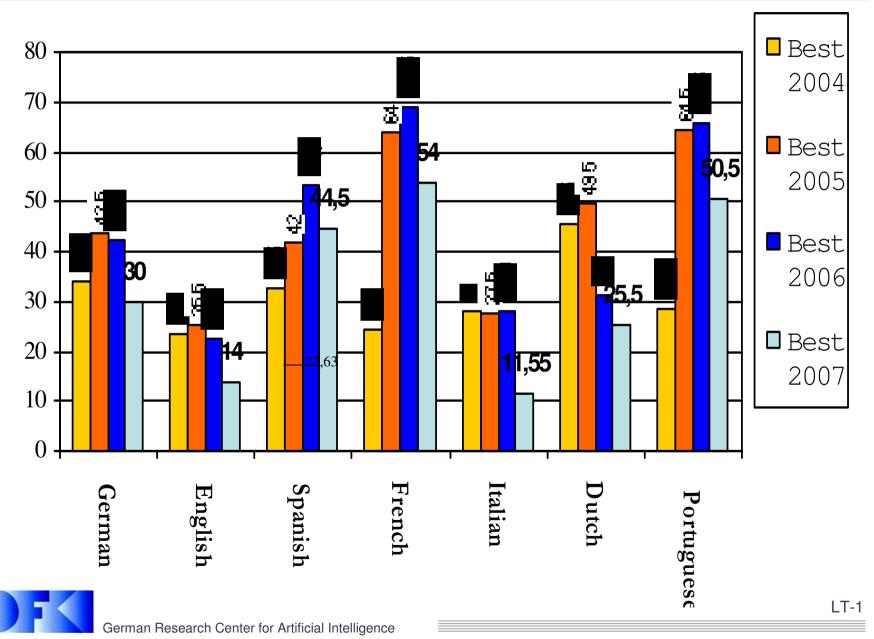
LT-Lab List of participants (2006, 2007)

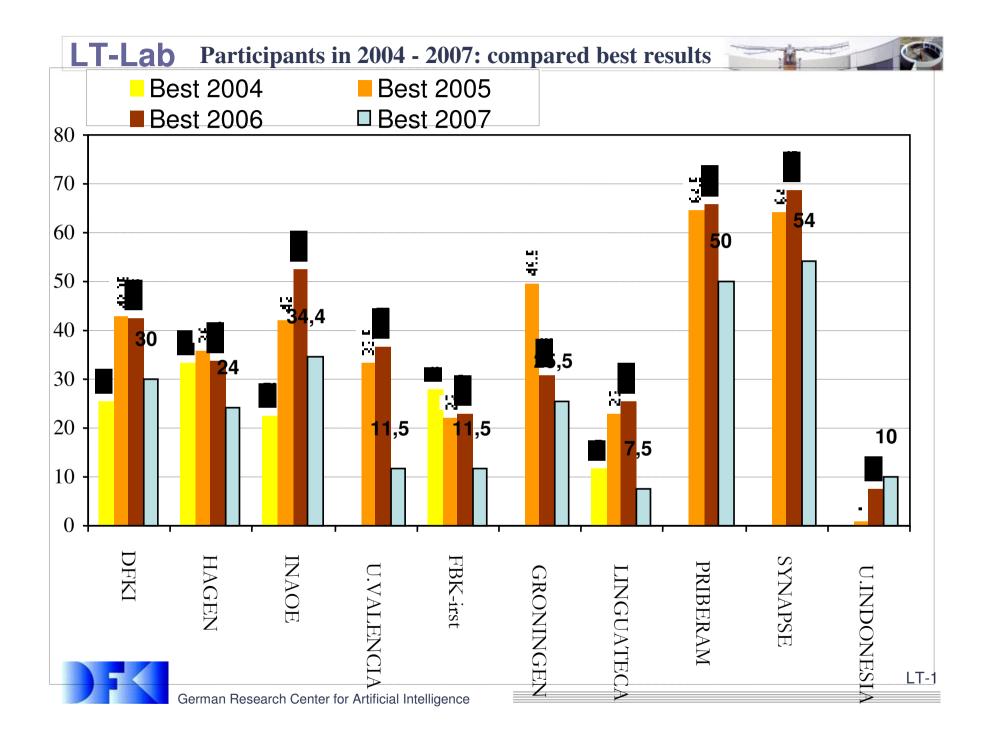
Acronym	NAME	Contry	Acronym	NAME	Country	
SYNAPSE	SYNAPSE Developpement	France	Lab.Inf.D' Avignon	Lab.Inf. D'Avignon	France	
Ling-Comp	U.Rome-La Sapienza	Italy				
Alicante	U.Alicante- Informatica	Spain	U.Sao Paulo	U.Sao Paulo – Math	Brazil	
Hagen	U.Hagen-Informatics	Germany	Vanguard	Vanguard Engineering	Mexico	
Daedalus	Daedalus Consortium	Spain	LCC	Language Comp. Corp.	USA	
Jaen	U.Jaen-Intell.Systems	Spain	UAIC	U.AI.I Cuza" Iasi	Romani	
ISLA	U.Amsterdam	Netherlands	Wroclaw U.	Wroclaw U.of Tech	Poland	
INAOE	Inst.Astrophysics,Optics&Electronics	Mexico	RFIA-UPV	Univ.Politècnica de Valencia	Spain	
DEPOK	U.Indonesia-Comp.Sci.	Indonesia	LIMSI	CNRS Lab-Orsay Cedex	France	
DFKI	DFKI-Lang.Tech.	Germany	U.Stuttgart	U.Stuttgart-NLP	German	
FURUI Lab.	Tokyo Inst Technology	Japan	FBK	FBK-IRST	Italy	
Linguateca	Linguateca-Sintef	Norway	JRC-	Institute for the Protection	Italy	
LIC2M-CEA	Centre CEA Saclay	France	ISPRA	and the Security of the Citizen		
LINA	U.Nantes-LINA	France	ВТВ	BulTreeBank Project	Bulgaria	
Priberam	Priberam Informatica	Portugal	dltg	University of Limerick	Ireland	
U.Porto	U.Porto- AI	Portugal		INESC-ID	Portuga	
U.Groningen	U.Groningen-Letters	Netherlands	╡┟────	Univ. Wolverhampton	UK	
-	Univ. of Evora	Portugal	╡┟	Cindi Group	Canada	
	Univ. Poli. De Catalunay	Spain	╡╽	Macquarie University	Austral	
			-	RACAI	Romani	

BLUE=Industrial Companies, GREEN=2006 + 2007, RED=not 2007, BLACK=new 2007


LT-1

	Submitted runs #	Monolingual #	Cross-lingual #
CLEF 2003	17	6	11
CLEF 2004	48 (+182%)	20	28
CLEF 2005	67 (+39.5%)	43	24
CLEF 2006	77 (+13%)	42	35
CLEF 2007	37 (-52%)	20	17




This result is still under validation.

German Research Center for Artificial Intelligence

Best results in 2004, 2005, 2006, 2007

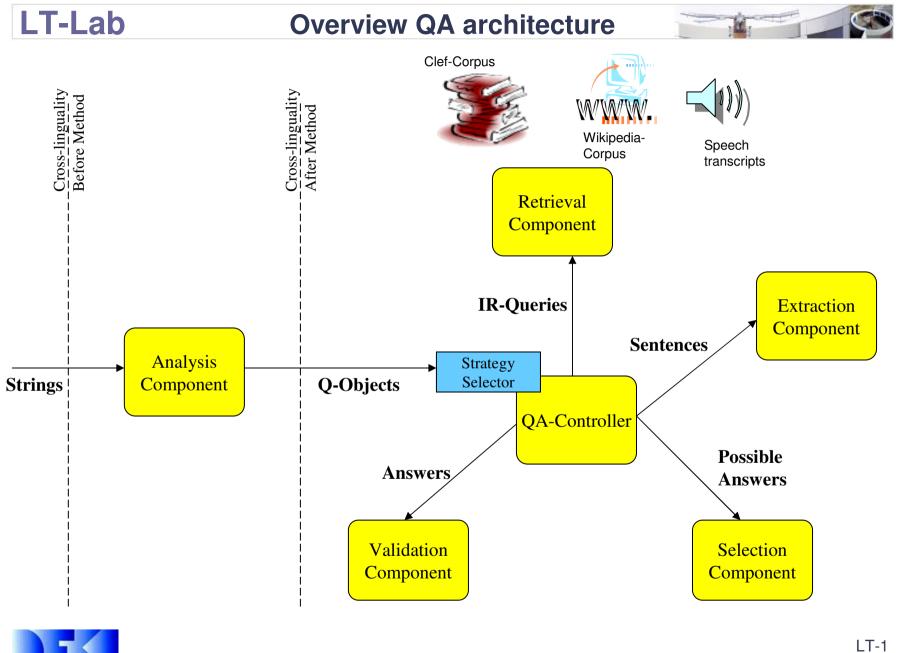
CE.

- \Rightarrow Some answers only in Wikipedia
- \Rightarrow Closed lists
 - Almost no answers
- \Leftrightarrow Temporal restrictions
 - Still very difficult
- \Leftrightarrow Linked questions
 - Topic not provided
 - Fail the first, fail the rest
 - Co-reference resolution

- \Rightarrow DFKI is participating since 2003
 - Focus on German monolingual QA and German/English crosslingual QA
 - Best results so far (acc.): DEDE=43,50%, ENDE=32,98%, DEEN=25.50%
- ☆ Goal for Clef 2007: increase spectrum of activities
 - Consideration of additional language pairs (ESEN, PTDE)
 - Participation in QAST pilot task
 - Participation in Answer Validation Exercise (AVE)

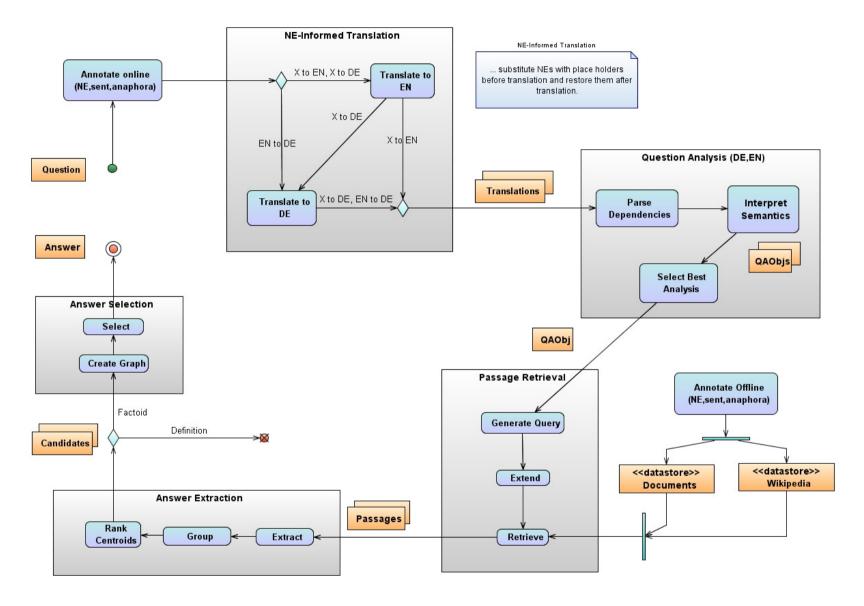
\Rightarrow NL question

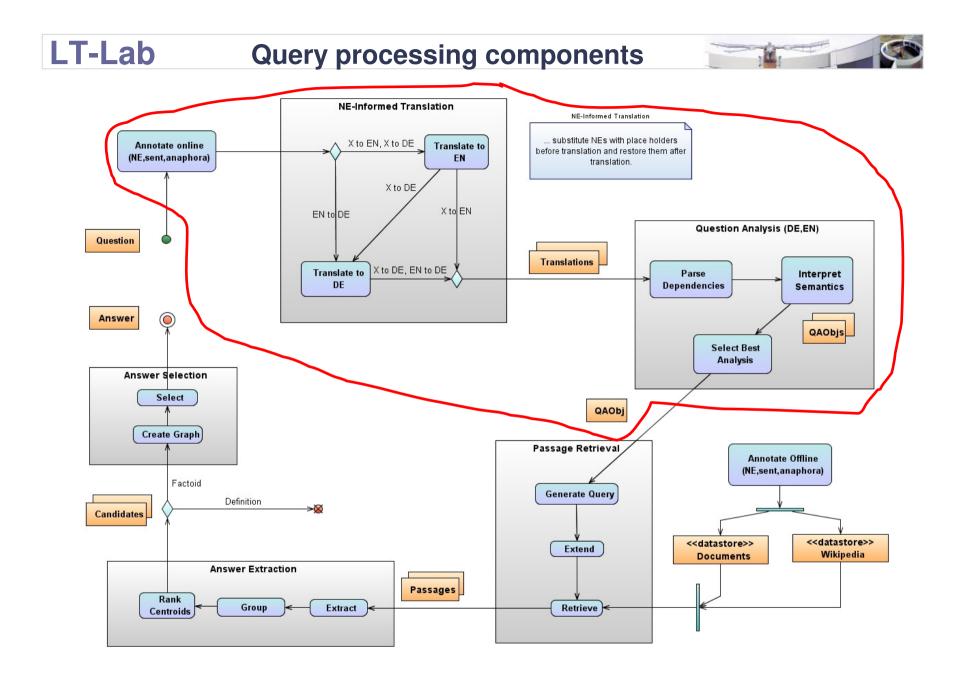
- Declarative description of search strategy and control information
- Analysis should be as complete and accurate as possible
- Use of full parsing and semantic constraints
- ☆ Consider document sources as implicit search space
 - Off-line: Provide question type oriented preprocessing for context selection
 - On-line: Provide question specific preprocessing for answer processing

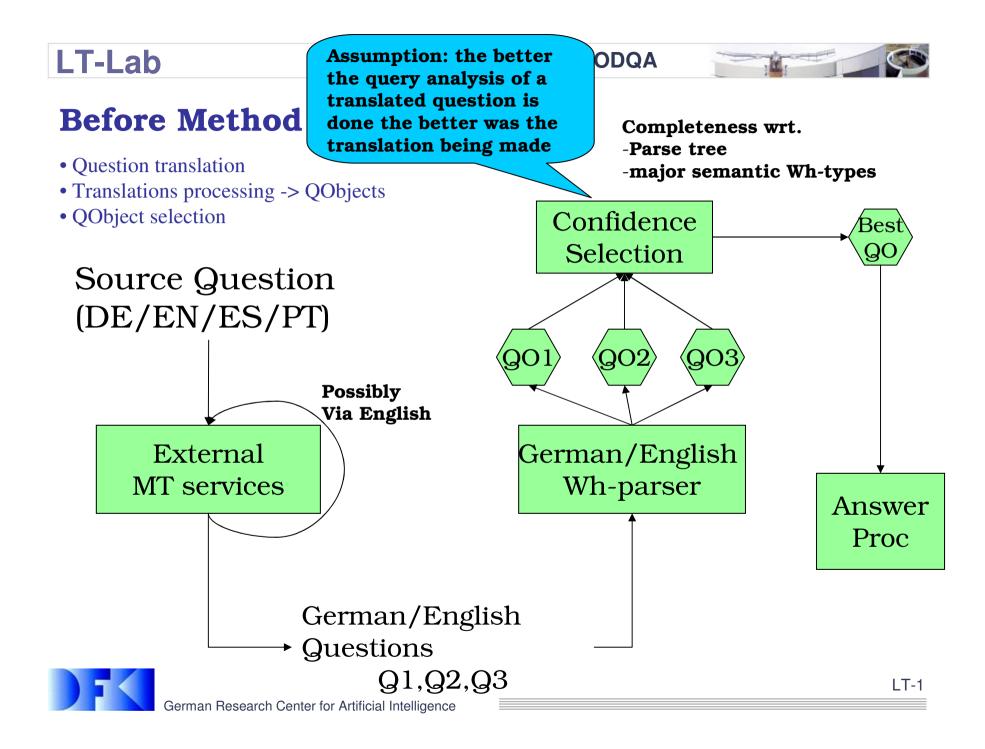


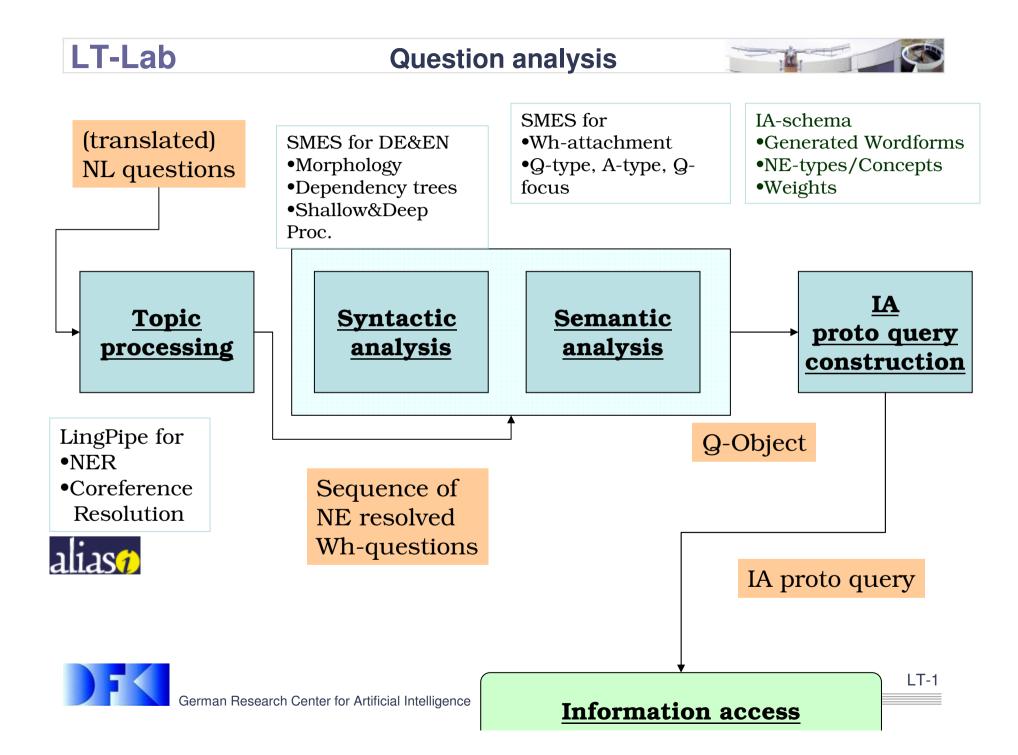
LT-Lab Common architecture for different answer pools

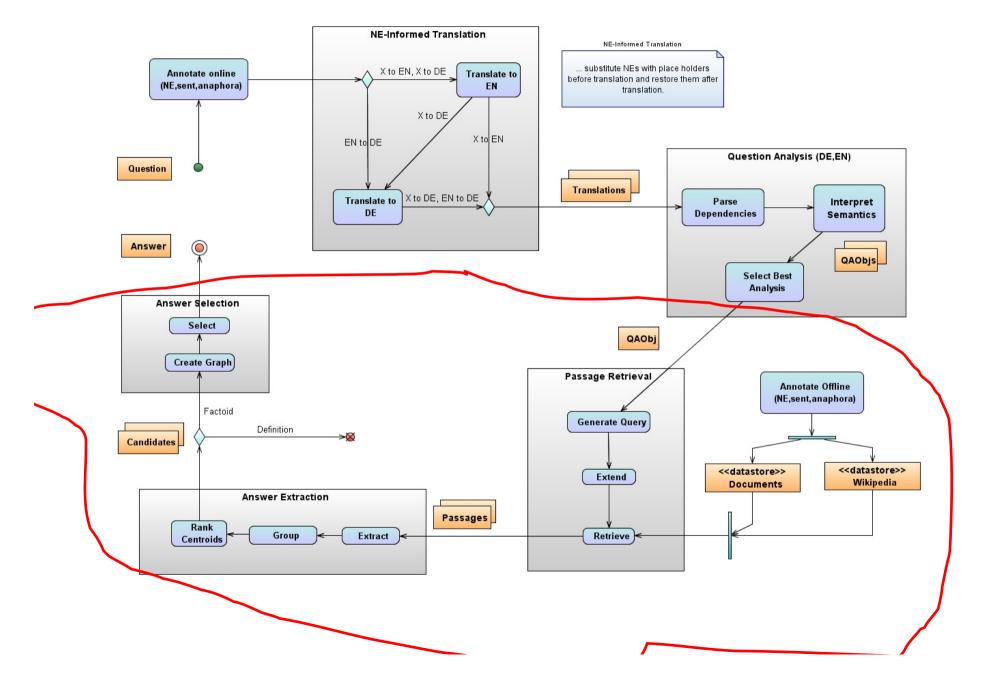
- ☆ Answer sources (covered by our technology)
 - Structured sources (DBMS)
 - Linguistically well-formed textual sources (news articles)
 - Well-structured web sources (Wikipedia)
 - Web snippets
 - Speech transcripts, cf. QAST
- ☆ Assumption:
 - QA for different answer sources share pool of same components
- ☆ Service oriented architecture (SOA) for QA
 - Strong component-oriented approach
 - Basis for open-source QA architecture (cf. EU project QALL-ME)






German Research Center for Artificial Intelligence


LT-Lab System Architecture for Clef 2007



LT-Lab Ouput example of	query analysis
Which Jewish painter lived from Exploiting Natural Language Generation	
<pre><qobj id="qId0" lang="DE" msg="quest" score<br=""><nl-string id="qId0"> <source id="qId0" lang="DE"/>Welche juedische Maler lebten von 1904-1944? <targets></targets> </nl-string> <qa-control> <q-focus>Maler</q-focus> <q-focus>Maler</q-focus> <q-scope>leb</q-scope> <q-type restriction="TEMP">C-COMPLETIONTYPE> <a-type type="list:SOME">NUMBER</a-type> </q-type></qa-control> <keywords> <keywords> <keyword id="kw0" type="UNIQUE"> <tk pos="V" stem="leb">lebten</tk> </keyword> <tk pos="V" stem="leb">lebten</tk> <tk pos="A" stem="juedisch">juedischen</tk> </keywords> <expanded-keywords></expanded-keywords></keywords></qobj></pre>	LA query created for Lucene +neTypes:NUMBER AND ("lebten" OR "lebte" OR "gelebt" OR "leben" OR "lebt") AND +maler^4 AND jüdisch^1 AND 1944^1 AND 1904^1
<ne-list> <ne id="ne0" type="DATE">1944</ne> <ne id="ne1" type="DATE">1904</ne> </ne-list>	LT-1

LT-Lab Answer processing components

Run ID	Righ	ıt	W	X	U	Performance still ok although some lost
	#	%	#	#	#	
dfki061dede _M	60	30	121	14	5	Coverage problems of English Wh-parser
dfki061ende _c	37	18.5	144	18	1	
dfki061deen _c	14	7	178	6	2	BUG in NE-InformedTranslation (used DE-based recognizer)
dfki062esen _C	10	5	180	10	0	Problems with MT
dfki062ptde _C	5	2.5	189	4	2	<u>online services</u> (PT-EN-DE)

- ☆ Online MT services are still insufficient
 - Develop own MT solutions, cf. EU project EuroMatrix
- ☆ Bad coverage of our English Wh-parser
 - First prototype for Clef 2007
- \Rightarrow Answer extraction currently robust enough for different answer sources
 - Similar performance for newspaper and Wikipedia
- ☆ Need more semantic analysis on answer side without lost of coverage and domain-independency
 - We are exploring cognitive semantics (cf. Talmy, 1987)
- ☆ Number of QA components also used in QAST pilot task and AVE

- ☆ QAST pilot task
 - For given written factoid question
 - Extract answer from manual or automatic speech transcripts
- ☆ Answer Validation Exercise
 - Given a triple of form (question, answer, supporting text)
 - Decide whether the answer to the question is correct and
 - Is supported or not according to the given supporting text

Result (encouraging)

Task	#Q	#A	MRR	ACC
T1	98	19	0.17	0.15
T2	98	9	0.09	0.09

T1 = Chill corpus manual

T2 = Chill corpus automatic

Result (really encouraging)

Runs	Recall	Precis ion	F- measu re	QA Accur acy
dfki07- run1	0.62	0.37	0.46	0.16
dfki07- run2	0.71	0.44	0.55	0.21

Task jointly organized by :

- UPC, Spain (J. Turmo, P. Comas)

Coordinator

- ELDA, France (C. Ayache, D. Mostefa)

- LIMSI-CNRS, France (S. Rosset, L. Lamel)

- \Rightarrow 4 tasks were proposed:
 - T1 : QA in manual transcriptions of lectures
 - T2 : QA in automatic transcriptions of lectures
 - T3 : QA in manual transcriptions of meetings
 - T4 : QA in automatic transcriptions of meetings
- \Rightarrow 2 data collections:
 - The CHIL corpus: around 25 hours (1 hour per lecture)
 Domain of lectures: Speech and language processing
 - The AMI corpus: around 100 hours (168 meetings)
 Domain of meetings: *Design of television remote control*

For each task, 2 sets of questions were provided:

- ☆ Development set (1 February 2007):
 - Lectures: 10 lectures (exam), 50 questions
 - Meetings: 50 meetings, 50 questions
- \Rightarrow Evaluation set (18 June 2007):
 - Lectures: 15 lectures, 100 questions
 - Meetings: 118 meetings, 100 questions

Examples of speech source – manual

transcripts from Chill corpus

<DOC> <DOC ID>ISL 20041111 B</DOC ID> <TOPIC>SPECTRAL ESTIMATION: NEW APPROACH FOR SPEECH RECOGNITION</TOPIC> <DOC TYPE>MANUAL TRANSCRIPTION</DOC TYPE> so yeah I just actually put the slides together so I might even surprise by myself which slide will be the next one. so I hope we can straighten everything out and I welcome you to my talk which I call uhm spectral estimation new approach for speech recognition. . so I want to start just to give a brief overview I want s just start with a first general model for a speech recognition system. how hmm where we basically need the spectral estimation I will talk about later. so usually we have the text generation . then we have the the s speech generation and we have a communication channel also and then we have our speech recognition system so we get the signal with the microphone and we do some signal processing feature extraction before we give it to the speech detector or the recognition system. now I already jump to er uh the simplified filter model of speech production . so if we talk about speech signals it's very important human speech signals it's very important to know that we have to basically separate two different class of signals which

Examples of speech source –

automatic transcripts

SO	69.400	0.440
yeah	69.840	0.250
Ī	70.110	0.100
just	70.210	0.360
actually	70.570	0.340
put	70.910	0.220
the	71.130	0.110
slides	71.240	0.400
together	71.640	0.550
SO	72.310	0.300
Ι	72.610	0.120
might	72.730	0.210
even	72.940	0.220
surprise	73.160	0.490
by	73.650	0.100
myself	73.750	0.540
which	74.380	0.230
slide	74.610	0.500
will	75.110	0.110
be	75.220	0.110
the	75.330	0.060
next	75.390	0.35
0one	75.740	0.270
<s></s>	76.010	0.270
{breath}	76.280	0.460
SO	76.830	0.340
Ι	77.200	0.100
hope	77.300	0.300
we	77.600	0.120
can	77.720	0.300

German Research Center for Artificial Intelligence

LT-1

Question-id, questions string

01 Which organisation has worked with the University of Karlsruhe on the meeting transcription system?

- 02 Where is the IBM research centre located?
- 03 Who is a guru in speech recognition?
- 04 How many speakers were transcribed from those recorded at the Eurospeech conference?

05 Where is ICSLP?

- 06 How many speakers were recorded at the Eurospeech conference?
- 07 Most of the speakers recorded at Eurospeech were non native speakers of which language?
- 08 When were the IWSLT evaluations?
- 09 Which organisation provided a significant amount of training data?
- 10 Where does Florian Metze work?
- 11 When did KTH start working on dialog systems?
- 12 Who looked at different automatic methods of deriving questions?
- 13 What is the weight of the blue spoon headset?
- 14 Where did the Eurospeech conference take place?
- 15 Who created the "how can I help you" system?
- 16 Which company does the speaker for the seminar on audio visual speech for pervasive computing belong to?
- 17 Where was the Eurospeech conference held in ninety-five?
- 18 Who has performed acoustic scene analysis?
- 19 Where is Gales from?
- 20 Where did Stefan Kantak present his work?

Question-id, nickname of participant, document-id, answer string

01 elda1_t1 ISL_20041123_E Carnegie Mellon

02 elda1_t1 ISL_20050127 New York | York town

03 elda1_t1 ISL_20050420 Gales

- 04 elda1_t1 ISL_20041111_B thirty-one speakers | thirty-one
- 05 elda1_t1 ISL_20041123_A Colorado
- 06 elda1_t1 ISL_20041111_B one hundred and eighty eight speakers | one hundred and eighty eight
- 07 elda1_t1 ISL_20041111_B English
- 08 elda1_t1 ISL_20041112_A two thousand and four
- 09 elda1_t1 ISL_20041123_E Icsi
- 10 elda1_t1 ISL_20041123_E University of Karlsruhe | Karlsruhe

11 elda1_t1 NIL

- 12 elda1_t1 ISL_20041123_A Miriam Keller
- 13 elda1_t1 ISL_20041123_C ten grams
- 14 elda1_t1 ISL_20050127 Geneva
- 14 elda1_t1 ISL_20041111_B Berlin
- 15 elda1_t1 ISL_20041123_A AT&T
- 16 elda1_t1 ISL_20050127 the IBM research center | IBM research center | IBM

17 elda1_t1 NIL

- 18 elda1_t1 ISL_20041123_C Rob Malkin
- 19 elda1_t1 ISL_20050420 Cambridge

20 elda1_t1 ISL_20041123_A Colorado

- \Rightarrow Factual questions
 - Who is a guru in speech recognition?

 \Rightarrow Expected answers = named entities.

List of NEs: person, location, organization, language, system/method, measure, time, color, shape, material.

☆ Examples of development set (<u>quest</u>, <u>answ</u>)

☆ Assessors used QASTLE, an evaluation tool developed in Perl (by ELDA), to evaluate the data.

- \Rightarrow Four possible judgments:
 - Correct
 - Incorrect
 - Inexact (too short or too long)
 - Unsupported (correct answers but wrong document)

- \Rightarrow Two metrics were used:
 - Mean Reciprocal Rank (MRR):

measures how well ranked is a right answer.

– Accuracy:

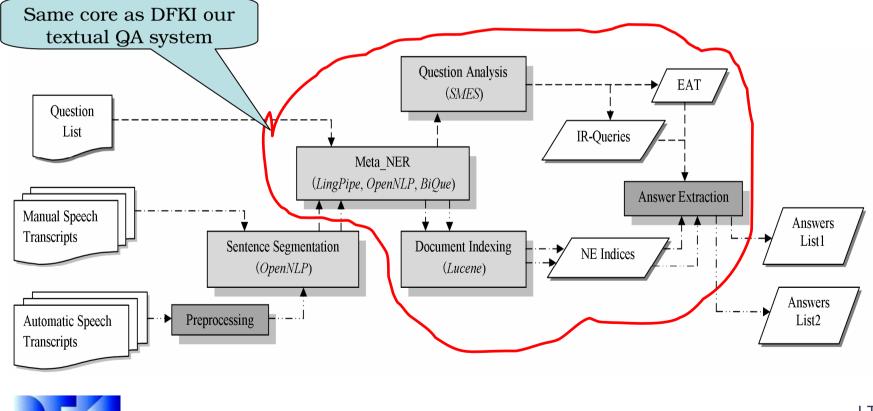
the fraction of correct answers ranked in the first position in the list of 5 possible answers

☆ Participants could submit up to 2 submissions per task and 5 answers per question.

LT-Lab Pa

- \Rightarrow Five teams submitted results for one or more QAST tasks:
 - CLT, Center for Language Technology, Australia;
 - DFKI, Germany ;
 - LIMSI-CNRS, Laboratoire d'Informatique et de Mécanique des Sciences de l'Ingénieur, France ;
 - Tokyo Institute of Technology, Japan;
 - UPC, Universitat Politècnica de Catalunya, Spain.
- \Rightarrow In total, 28 submission files were evaluated:

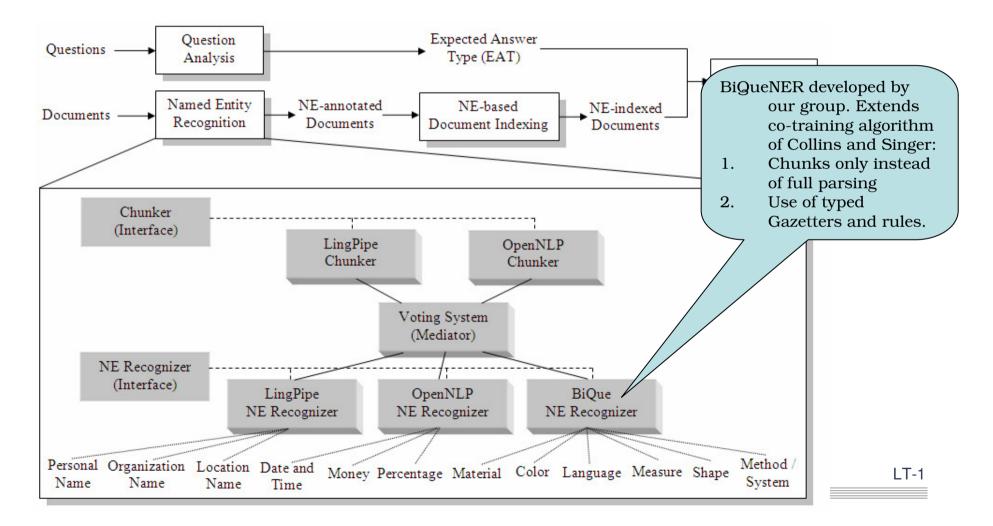
CHIL Corpus (lectures)		AMI Corpus (meetings)	
T1 (manual)	T2 (ASR)	T3 (manual)	T4 (ASR)
8 submissions	9 submissions	5 submissions	6 submissions



LT-Lab DFKI at QAST pilot task

\Leftrightarrow Goals

- Get experience with this sort of answer sources
- Adapt our text-based open-domain QA system that we used for the Clef main tasks
- Since QAST required different set of expected answer types we developed a federated search strategy for NER called Meta-NER



LT-Lab

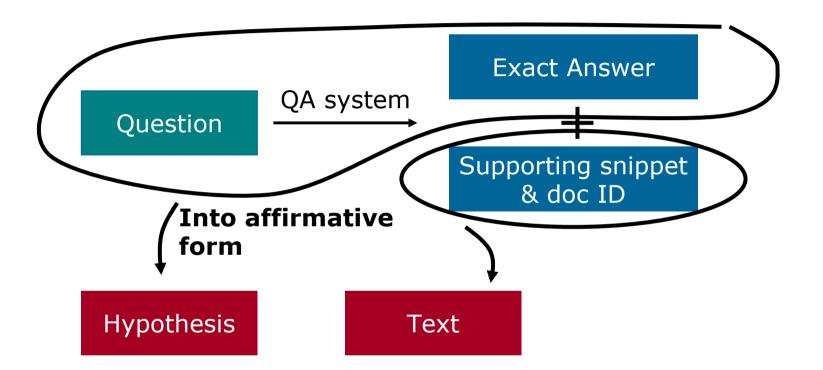
META-NER

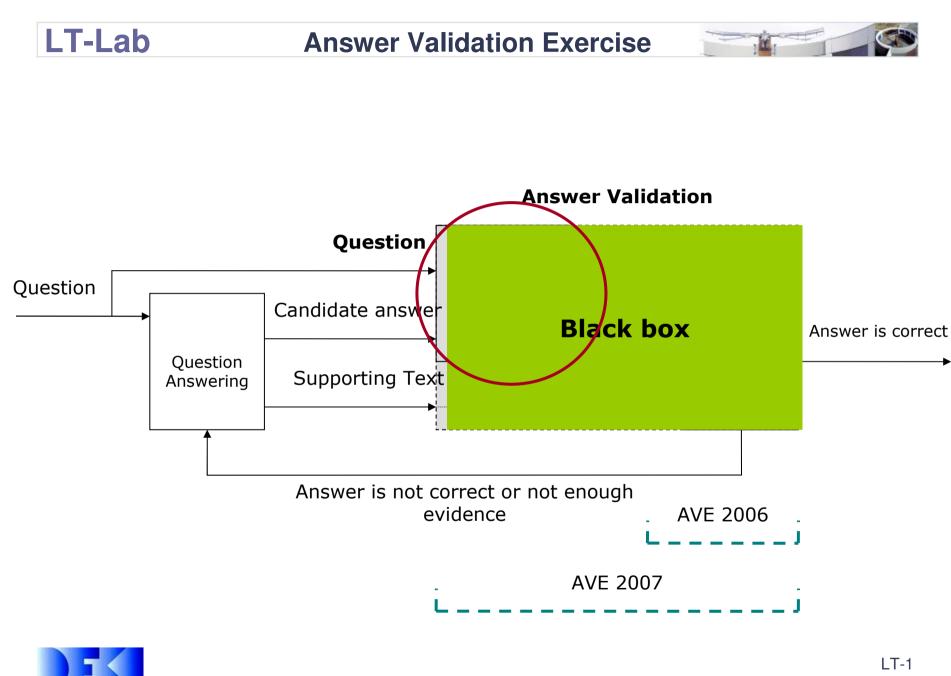
- \Rightarrow Call several NER in parallel
- ☆ Merge results by a voting strategy

\Rightarrow QA on CHIL manual transcriptions:

System	# Questions Returned	# Correct Answers	MRR	Accuracy
clt1_t1	98	16	0.09	0.06
clt2_t1	98	16	0.09	0.05
dfki1_t1	98	19	0.17	0.15
limsi1_t1	98	43	0.37	0.32
limsi2_t1	98	56	0.46	0.39
tokyo1_t1	98	32	0.19	0.14
tokyo2_t1	98	34	0.20	0.14
upc1_t1	98	54	0.53	0.51

\Rightarrow QA on CHIL automatic transcriptions:


System	# Questions Returned	# Correct Answers	MRR	Accuracy
clt1_t2	98	13	0.06	0.03
clt2_t2	98	12	0.05	0.02
dfki1_t2	98	9	0.09	0.09
limsi1_t2	98	28	0.23	0.20
limsi2_t2	98	28	0.24	0.21
tokyo1_t2	98	17	0.12	0.08
tokyo2_t2	98	18	0.12	0.08
upc1_t2	96	37	0.37	0.36
upc2_t2	97	29	0.25	0.24


Validate the correctness of the answers...

... given by the participants at CLEF QA 2007

If the text semantically entails the hypothesis, then the answer is expected to be correct.

☆ AVE 2006 ☺

- Not possible to quantify the potential gain that AV modules give to QA systems
- \doteqdot Change in AVE 2007 methodology
 - Group answers by question
 - Systems must validate all
 - But select one


```
<q id="116" lang="EN">
   <q_str>What is Zanussi?</q_str>
   <a id="116_1" value="">
       <a_str>was an Italian producer of home appliances</a_str>
       <t_str doc="Zanussi">Zanussi For the Polish film director, see
       Krzysztof Zanussi. For the hot-air balloon, see Zanussi (balloon). Zanussi
       was an Italian producer of home appliances that in 1984 was
       bought</t str>
   </a>
   <a id="116 2" value="">
       <a_str>who had also been in Cassibile since August 31</a_str>
       <t_str doc="en/p29/2998260.xml">Only after the signing had taken
       place was Giuseppe Castellano informed of the additional clauses that had
       been presented by general Ronald Campbell to another Italian general,
       Zanussi, who had also been in Cassibile since August 31.</t_str>
   </a>
   <a id="116_4" value="">
       <a_str>3</a_str>
       <t_str doc="1618911.xml">(1985) 3 Out of 5 Live (1985)
                                                                   What Is
       This?</t_str>
   </a>
</a>
```


☆ Remove duplicated answers inside the same question group

Discard NIL answers, void answers and answers with too long supporting snippet

☆ This processing lead to a reduction in the number of answers to be validated

LT-Lab Collections (# answers to validate)

	Testing	Development
English	202	1121
Spanish	564	1817
German	282	504
French	187	1503
Italian	103	476
Dutch	202	528
Portuguese	367	817
Bulgarian	-	70
Romanian	127	-

Available for CLEF participants at **nlp.uned.es/QA/ave**/

\Rightarrow Not balanced collections

Approach: Detect if there is enough evidence to accept an answer

☆ Measures: Precision, recall and F over ACCEPTED answers

☆ Baseline system: Accept all answers

Precision, Recall and F measure over correct answers for **English**

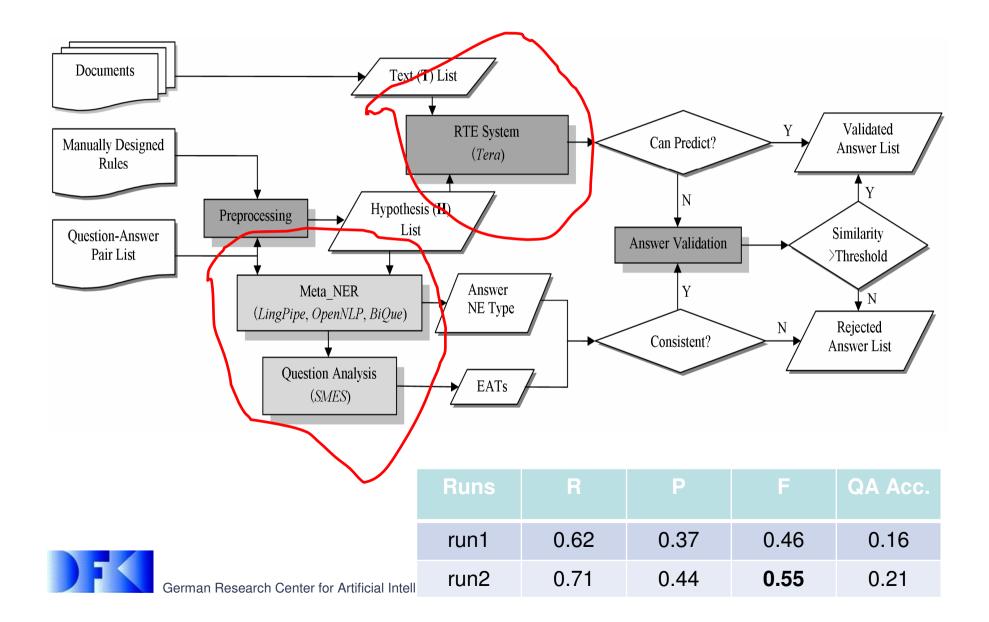
Group	System	F	Precision	Recall
DFKI	ltqa_2	0.55	0.44	0.71
DFKI	ltqa_1	0.46	0.37	0.62
U. Alicante	ofe_1	0.39	0.25	0.81
Text-Mess Project	Text-Mess_1	0.36	0.25	0.62
lasi	adiftene	0.34	0.21	0.81
UNED	rodrigo	0.34	0.22	0.71
Text-Mess Project	Text-Mess_2	0.34	0.25	0.52
U. Alicante	ofe_2	0.29	0.18	0.81
100% VALIDATED		0.19	0.11	1
50% VALIDATED		0.18	0.11	0.5

LT-Lab

- ☆ AVE System is based on our RTE system (cf. Wang & Neumann, AAAI-2007, RTE-3 challenge)
- \doteqdot RTE method already demonstrated good results for QA task
 - RTE-3 (only QA): 81.5 %, Trec-2003 QA: 65.7 %

☆ RTE Method: Novel sentence level Kernel method

- Subtree alignment on syntactic level
 - Check similarity between tree of H and relevant subtree in T
- Subsequence kernel
 - Consider all possible subsequence of spine (path) of difference pairs
 - SVM for classification



☆ Details about our core RTE method

- System Called TERA
- Implemented and evaluated by Rui Wang as part of his Master Thesis
- References
 - R. Wang and G. Neumann <u>Recognizing Textual Entailment Using a Subsequence Kernel Method.</u> <u>AAAI-2007, Vancoucer</u>.
 - R. Wang and G. Neumann <u>Recognizing Textual Entailment Using Sentence Similarity based on</u> <u>Dependency Tree Skeletons</u> <u>Workshop proceedings of the RTE-3 challenge</u>, 2007, Association for Computational Linguistics.

LT-Lab AVE architecture

- ☆ Supporting text from web documents cause parsing problems
- ☆ Violation of some of our RTE system's assumptions
 - Required: H should be "verbally" smaller than T
 - Violated by: Q-A made patterns are too long
 - impact on recall
- ☆ If supporting text is very long (a complete document) then our RTE system is misleaded
 - Impact on precision

LT-Lab

Thanks!

LT-1