Einführung in die Computerlinguistik

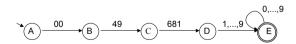
Morphologie und Automaten II

WS 2009/2010

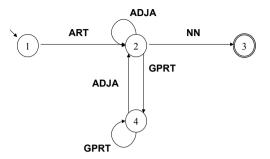
Manfred Pinkal

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Saarbrücker Telefonnummern (international)



Ein deterministisches Diagramm



Beobachtung: Bestimmte Diagramme erfordern keine Suche, weil Übergänge bei gegebenem Zustand und Eingabesymbol eindeutig festgelegt sind.

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Deterministische endliche Automaten

- Die beiden Diagramme unterscheiden sich von dem Adjektiv-Diagramm in einem wesentlichen Punkt: Für jeden Zustand/Knoten und jede Eingabe gibt es höchstens eine Kante, die beschritten werden kann. Sie sind deterministisch.
- Die Definition des "deterministischen endlichen Automaten" (DEA oder DFA, für "deterministic finitestate automaton") führt einige weitere, weniger wesentliche, aber nützliche Beschränkungen gegenüber dem NEA ein.

Deterministische und nicht-deterministische Automaten

- NEA erlaubt beliebige Worte (incl. ε) als Kanteninschrift
- NEA erlaubt für einen Ausgangszustand und eine Eingabe mehrere oder gar keinen Zielzustand
- D.h.: NEA hat eine Übergangsrelation.

- DEA hat nur Einzelsymbole als Kanten-Inschriften, insbesondere sind Leerwort-Kanten nicht zulässig.
- DEA hat zu jedem Zustand und zu jedem Symbol genau eine wegführende Kante
- D.h.: DEA hat eine Übergangsfunktion.

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Beispiel: Der DEA für Wortartmuster [1]

DEA A = $\langle K, \Sigma, \delta, s, F \rangle$ mit

- K= {1,2,3,4}

 $-\Sigma = \{ART, ADJA, NN, GPRT\}$

- s = 1

 $- F = {3}$

- δ definiert durch: $\delta(1,ART) = 2$

 $\delta(1, N, N, N) = 2$ $\delta(2, N, N) = 3$ $\delta(2, N, N) = 4$

... ...

Definition: Deterministischer endlicher Automat

Ein deterministischer endlicher Automat ist ein Quintupel

 $A = \langle K, \Sigma, \delta, s, F \rangle$, wobei

- K nicht-leere endliche Menge von Knoten (Zuständen)
- Σ nicht-leeres Alphabet
- s ∈ K Startzustand
- $F \subseteq K$ Menge von Endzuständen
- $-\delta: K \times \Sigma \rightarrow K$ Übergangsfunktion

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Beispiel [2]: Übergangstabelle für δ

δ:	ART	ADJA	NN	GPRT
1 2	2	2	3	4
3				
4		2		4

Beispiel [3]: Übergangstabelle für δ , komplettiert

δ:	ART	ADJA	NN	GPRT	
1	2	5	5	5	
2	5	2	3	4	
3	5	5	5	5	
4	5	2	5	4	
5	5	5	5	5	

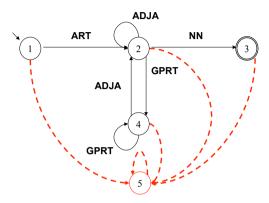
 Der Zustand eines DEA, aus dem es keine Möglichkeit gibt, in einen Endzustand zu gelangen, heißt "Senke" oder engl. "trap state": Falle.

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Deterministische und nicht-deterministische Automaten [1]

- DEAs erlauben den Test von Eingabeketten in linearer Zeit: Jedes Wort der Länge n wird in genau n Schritten abgearbeitet.
- DEAs haben allerdings ein eingeschränkteres Beschreibungs-Inventar als NEAs.
- Frage: Ist deshalb die Ausdrucksstärke des DEA-Formalismus eingeschränkter als die von NEAs? Das heißt, gibt es Sprachen, die durch einen NEA, aber nicht durch einen DEA beschrieben werden?
- Die Antwort lautet: Nein!

Das Zustandsdiagramm für Wortartmuster: Übergangsfunktion δ komplettiert



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Deterministische und nicht-deterministische Automaten [2]

- Jede Sprache, die von einem NEA akzeptiert wird, kann auch durch einen DEA beschrieben werden (und, trivialerweise, auch umgekehrt: ein DEA ist ein spezieller NEA). NEAs und DEAs besitzen die gleiche Ausdrucksstärke, die Formalismen sind beschreibungsäquivalent.
- Das ist beweisbar. Noch wichtiger: Der Beweis ist konstruktiv, d.h.:
- Es gibt ein Konstruktionsverfahren, das es erlaubt, zu jedem NEA A einen DEA A' zu konstruieren, so dass L(A') = L(A).

Die NEA-DEA-Überführung

Der Algorithmus zur NEA-DEA-Überführung besteht aus drei Schritten:

- 1. Beseitigung von Mehrsymbol-Kanten
- 2. Beseitigung von ε-Kanten
- 3. Die "Potenz-Automaten"-Konstruktion

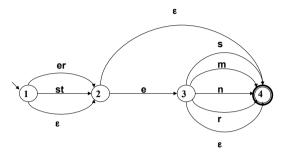
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 1: Beseitigung von Mehrsymbolkanten

Gegeben sei der NEA A = $\langle K, \Sigma, \Delta, s, F \rangle$.

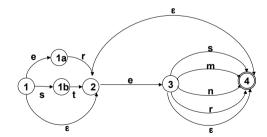
- Für alle Kanten <q,w,q'> mit w = a₁...a_n, n >1:
 Entferne <q,w,q'> aus Δ.
- Erweitere K um neue Zustände $q_1, ..., q_{n-1}$.
- Erweitere Δ um neue Kanten
 <q, a₁, q₁>, <q₁, a₂, q₂>, ..., <q_{n-1}, a_n, q'>

Adjektivendungen: Zustandsdiagramm



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Beispiel-Automat nach Schritt 1:



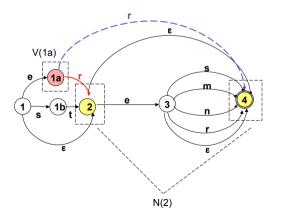
Die NEA-DEA-Überführung

Der Algorithmus zur NEA-DEA-Überführung besteht aus drei Schritten:

- 1. Beseitigung von Mehrsymbol-Kanten
- 2. Beseitigung von ε-Kanten
- 3. Die "Potenz-Automaten"-Konstruktion

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 2: Beseitigung von ε-Kanten



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 2: Beseitigung von ε-kanten

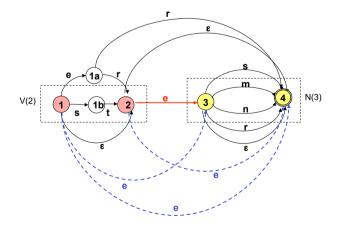
- Wir definieren zunächst als Hilfsbegriffe den "ε-Vorbereich" V_ε(p) und den "ε-Nachbereich" N_ε (p) von Zuständen:
 - $-V_{\epsilon}(p) = \{q | p \text{ ist von } q \text{ aus ohne Abarbeiten eines Symbols erreichbar} \}$
 - $N_{\epsilon}(p) = \{q | q \text{ ist von } p \text{ aus ohne Abarbeiten eines Symbols erreichbar}\}$

Anmerkung: $V_{\epsilon}(p)$ und $N_{\epsilon}(p)$ enthalten insbesondere p selbst.

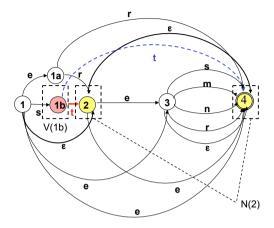
- Für jede nicht-leere Kante <p, a, q> ∈ Δ: Erweitere Δ um alle <p', a, q'> mit p' ∈ V_ε(p), q'∈N_ε(q).
- Entferne alle leeren Kanten aus Δ .

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 2: Beseitigung von ε-kanten

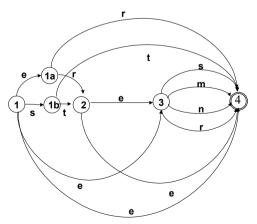


Schritt 2: Beseitigung von ε-kanten



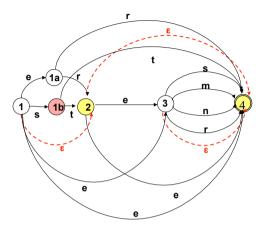
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 2: Beseitigung von ε-kanten: Resultat ist "buchstabierender Automat"



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 2: Beseitigung von ε-kanten



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

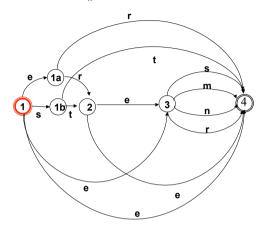
Schritt 2: Beseitigung von ε-kanten

- Wir definieren zunächst als Hilfsbegriffe den "ε-Vorbereich" V_ε(p) und den "ε-Nachbereich" N_ε (p) von Zuständen:
 - $V_{\epsilon}(p) = \{q | p \text{ ist von } q \text{ aus ohne Abarbeiten eines Symbols erreichbar}\}$
 - $-N_{\epsilon}(p) = \{q | q \text{ ist von } p \text{ aus ohne Abarbeiten eines Symbols erreichbar} \}$

Anmerkung: V_s (p) und N_s (p) enthalten insbesondere p selbst.

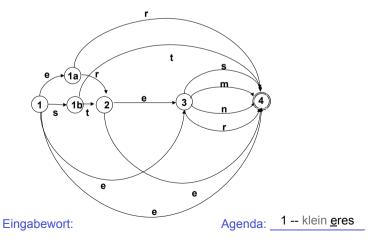
- Für jede nicht-leere Kante <p, a, q> ∈ Δ: Erweitere Δ um alle <p', a, q'> mit p' ∈ V, (p), q'∈N, (q).
- Entferne alle leeren Kanten aus Δ.
- Wenn sich ein Endzustand im ε-Nachbereich des Startzustandes s befindet, füge s zu den Endzuständen hinzu.

Schritt 2: Beseitigung von ε-kanten: Resultat ist "buchstabierender Automat"



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche



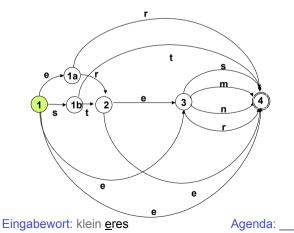
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 3: Potenzautomaten-Konstruktion, Vorüberlegung

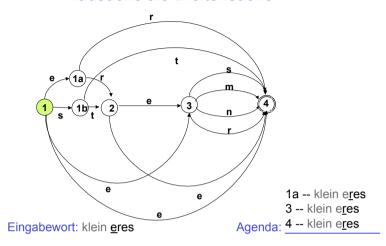
- Wir haben einen Algorithmus zur Pfadsuche am Beispiel des unbearbeiteten Adjektivendungs-Diagramms kennengelernt: "Tiefensuche mit Backtracking". Durch die Organisation der Agenda als Stapel/Stack ("last in – first out") wird eine Alternative so weit wie möglich verfolgt; bei endgültigem Scheitern wird das System zurückgesetzt.
- Durch die Organisation der Agenda als Warteschlange (queue), bei der die Aufgaben in der Reihenfolge ihrer Generierung abgearbeitet werden ("first in – first out"), erhalten wir Breitensuche. Die alternativen Pfade werden (quasi) parallel verfolgt.

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche

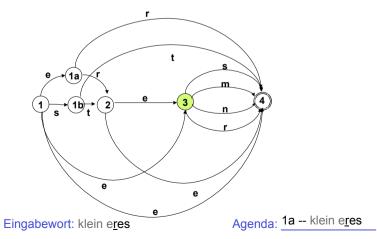


Pfadsuche als Breitensuche



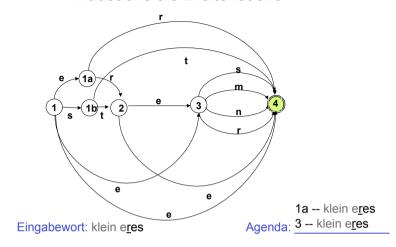
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche



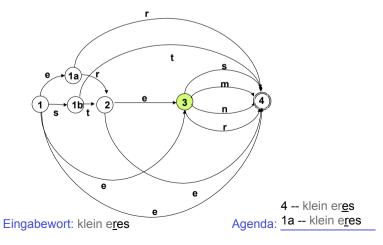
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche

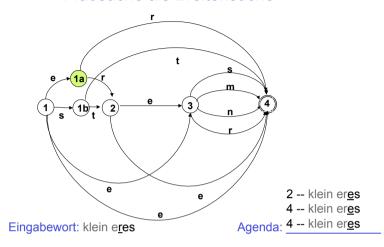


Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche

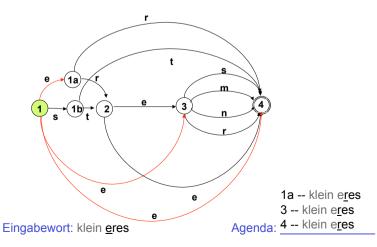


Pfadsuche als Breitensuche



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche



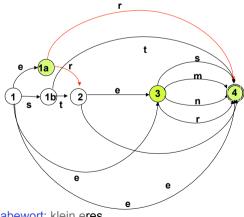
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 3: Potenzautomaten-Konstruktion. Vorüberlegung [2]

- Wir können "getaktete" Breitensuche in einem buchstabierenden NEA so beschreiben:
 - Wir ermitteln alle Zustände, die durch die Abarbeitung des ersten Eingabesymbols vom Startzustand aus erreicht werden können.
 - Wir ermitteln alle Zustände, die durch die Abarbeitung des zweiten Eingabesymbols von einem Zustand dieser Zustandsmenge erreicht werden können, usf.
 - Wenn die Zustandsmenge, die wir auf diese Weise nach Abarbeiten des kompletten Wortes w enthalten, einen Endzustand des NEA enthält, wird w akzeptiert.

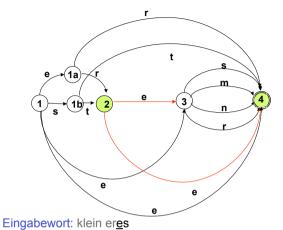
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche



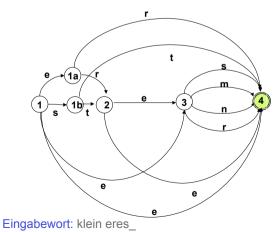
Eingabewort: klein eres

Pfadsuche als Breitensuche



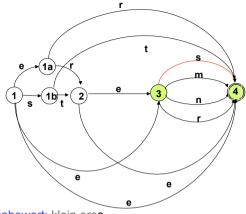
Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Pfadsuche als Breitensuche



Eingabewort: klein eres

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Schritt 3: Potenzautomaten-Konstruktion, Vorüberlegung [3]

- Wir können diese "getaktete Suche" selbst mit einem endlichen Automaten beschreiben:
 - Zustände des neuen Automaten lassen sich als Mengen von Zuständen des NEA beschreiben. Am Beispiel: Nach Abarbeiten des ersten Symbols "e" befindet er sich in dem Zustand, dass es die Zustandsmenge des NEA {1a, 2, 4} als mögliche aktuelle Zustände erkannt hat.
 - Wenn die Eingabekette abgearbeitet ist, und der Automat sich in einem Zustand befindet, der einen Endzustand des NEA enthält, ist die Eingabe akzeptiert.
 - Die "möglichen Zustände" des NEA, die sich durch ein bestimmtes Eingabe-Symbol erreichen lassen, sind eindeutig definiert. Der neue Automat ist also ein DEA.

Schritt 3: Potenzautomaten-Konstruktion: Die Definition

Der Potenzautomat zum buchstabierenden NEA $A = \langle K, \Sigma, \Delta, s, F \rangle$ ist der DEA A':

$$A' = \langle \mathsf{K}', \, \Sigma, \, \delta, \, \mathsf{s}', \, \mathsf{F}' \rangle \quad \mathsf{mit} :$$

$$- \, \mathsf{K}' = \mathscr{D} \, (\mathsf{K}) \, (\mathsf{die} \, \mathsf{Potenzmenge} \, \mathsf{der} \, \mathsf{Zustandsmenge} \, \mathsf{des} \, \mathsf{NEA})$$

$$- \, \mathsf{s}' = \{\mathsf{s}\} \\ - \, \delta(\mathsf{p}', \, \mathsf{a}) = \{\mathsf{q}| \, \mathsf{es} \, \mathsf{gibt} \, \mathsf{p} \!\! \in \!\! \mathsf{p}' \, \mathsf{und} \, \langle \mathsf{p}, \mathsf{a}, \mathsf{q} \!\! > \!\! \in \!\! \mathsf{D} \} \, \, \mathsf{für} \, \mathsf{jedes} \, \mathsf{p}' \!\! \subseteq \!\! \mathsf{K},$$

$$a \!\! \in \!\! \mathsf{S} \\ - \, \mathsf{q}' \in \mathsf{F}' \, \mathsf{gdw}. \, \mathsf{q}' \cap \mathsf{F} \neq \mathscr{O} \, \mathsf{Vorlesung} \, \, \mathsf{"Einführung} \, \mathsf{in} \, \mathsf{die} \, \mathsf{Cl."} \, \mathsf{2009/2010} \, \mathsf{@} \, \mathsf{M}. \, \mathsf{Pinkal} \, \mathsf{UdS} \, \mathsf{Computerlinguistik}$$

Beispiel: DEA für Adjektiv-Endungen

- Grundlage: der buchstabierende Automat
 A = <{1,1a,1b,2,3,4}, {e,m,n,r,s,t}, Δ, 1, {1,4}>,
 Δ wie im Diagramm Folie 42
- Potenzautomat ist A' = <K', Σ, δ, s', F'>
 mit K' = ℘ (K)
 s' = {s}
 F'= {q'∈K' | 1∈q' oder 4∈q'}
 δ s. Übergangstabelle nächste Folie

Praktisches Vorgehen

Der Potenzautomat A' zu A = <K, Σ , Δ , s, F> hat $2^{|\Delta|}$ Zustände. In der Regel sind viele dieser Zustände unerreichbar (vom Startzustand {s} aus) und deshalb funktionslos.

Praktisches Konstruktionsverfahren:

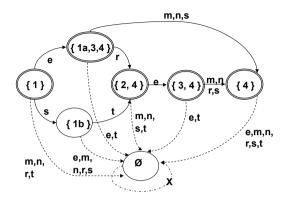
Beginne mit {s}, berechne die Übergangsfunktion für {s}, für alle direkt von s erreichbaren Zustände usw., bis keine neuen erreichbaren Zustände hinzukommen.

Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

DEA für Adjektiv-Endungen, Übergangstabelle

δ:	е	m	n	r	S	t
{1}	{1a,3,4}	Ø	Ø	Ø	{1b}	Ø
{1a,3,4}	Ø	{4}	{4}	{2,4}	{4}	Ø
{1b}	Ø	Ø	Ø	Ø	Ø	{2,4}
{2,4}	{3,4}	Ø	Ø	Ø	Ø	Ø
{3,4}	Ø	{4}	{4}	{4}	{4}	Ø
{4}	Ø	Ø	Ø	Ø	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø

Das Diagramm



Vorlesung "Einführung in die CL" 2009/2010 © M. Pinkal UdS Computerlinguistik

Das Diagramm, vereinfacht

