Foundations of Language Science and Technology

Acoustic Phonetics 2: Speech signals and waveforms

Jan 21, 2015

FR 4.7, Phonetics Saarland University

- Prerequisites for acoustically based speech communication
 - sound production
 - sound perception
 - sound propagating medium
- Basic acoustic properties of speech sounds
 - frequencies within the range of human auditory perception (20 – 20,000 Hz)
 - amplitude: displacement of an oscillation \rightarrow perceived loudness
 - duration: perceptible minimum duration; duration of units of speech
 - (timbre)

Speech sounds and speech signals

- Basic types of speech signals
 - quasi-periodic signals: sonority
 - vowels
 - sonorants (approximants, glides, nasals, liquids)
 - stochastic signals: frication noise
 - fricatives
 - plosive aspirations
 - transient signals impulse
 - plosive releases
 - mixed excitation voiced frication noise
 - voiced fricatives

Speech sounds and speech signals

"Heute ist schönes Frühlingswetter."

Speech sounds and speech signals: vowels

"H<u>eu</u>t<u>e i</u>st sch<u>ö</u>n<u>e</u>s Frühlingswetter."

Speech sounds and speech signals: sonorants

"Heute ist schö<u>n</u>es Frühlingswetter."

Speech sounds and speech signals: fricatives

"<u>H</u>eute i<u>s sch</u>öne<u>s F</u>rühling<u>sw</u>etter."

Speech sounds and speech signals: plosives

"Heute is(t) schönes Frühlingswetter."

Speech sounds...: voiced fricatives

"Heute ist schönes Frühlingswetter."

- Simple periodic oscillation: pure sine wave
 - cyclically recurring, simple oscillation pattern, determined by
 - fundamental period T₀
 - amplitude A
 - phase Φ
- Fundamental frequency [Hz]: 1 / fundamental period [s]

 $F_0 = 1 / T_0$

- Phase relation
 - two sine waves of same frequency and amplitude, but temporally displaced maxima, minima, and zero crossings

 \rightarrow phase shift (here: angle 90°)

- Frequency differences
 - two sine waves of same amplitude and phase, but different frequency (here: 1 vs. 2 Hz)

- Complex periodic signals
 - cyclically recurring oscillation patterns
 - composed of at least two sine waves
 - fundamental frequency = 1 / complex fundamental period
- Form of resulting complex wave depends on frequency, amplitude and phase relations between component waves

- Complex waveform: 2 components
 - two sine waves (100 Hz, 1000 Hz) with same phase and different amplitude (left)
 - complex wave (right) resulting from addition of the two components

• $F_0 = 100 \text{ Hz}$

Complex waveform (red): 5 components

- five sine waves (100, 200, 300, 400, 500 Hz) with same phase
- only 3 lowest frequency components displayed

Complex waveform (red): 5 components

- five sine waves (100, 200, 300, 400, 500 Hz) with phase shifts
- only 3 lowest frequency components displayed

Power spectrum

 Power spectrum (amplitude over frequencies) of the complex waveform composed of five components (see above)

Fourier analysis

Fourier analysis: power spectrum of 5 component wave (see above)

Fourier's theorem

 every complex wave can be analytically decomposed into a series of sine waves, each with a specific set of frequency, amplitude and phase values

Fourier analysis and power spectrum

- Differences between result of Fourier analysis and idealized power spectrum (see above):
 - broader peaks
 - additional peaks
- Reasons for these differences:
 - Fourier analysis assumes infinitely long signal, whereas analysis is performed over 2 fundamental periods (quasi-periodic signal)
 - analog vs. digital signal representation

Discrete Fourier Transform

- Discrete Fourier analysis (Discrete Fourier Transform, DFT)
 - digital Fourier analysis of complex signals, yielding a spectrum of sine wave components
 - transformation of data from time domain into frequency data
 - resolution parameters
 - sampling rate (e.g. 16000 Hz)
 - window size (length; e.g. 512 samples)
 - granularity of computed spectrum ca. 31 Hz (16000/512=31.25), with linear interpolation
 - trading relation (uncertainty principle)
 - good frequency resolution \leftrightarrow poor time resolution
 - good time resolution \leftrightarrow poor frequency resolution

Spectrogram

- Analysis window size/length:
 - short temporal window : good time resolution
 - Iong temporal window: good frequency resolution
- Types of spectrograms:
 - narrow band spectrogram (e.g. 50 Hz): good frequency resolution
 - wide band spectrogram (e.g. 300 Hz): good temporal resolution

From spectrum to spectrogram

- Power spectrum:
 - snapshot taken at a specific instant of time in the speech signal
- Spectrogram:
 - time as 3rd dimension (beside frequency and amplitude)
 - x-axis: time [s]
 - y-axis: frequency [Hz]
 - "z-axis": amplitude [dB] (gray-scale or color coding)

Let's go use Praat for further interactive demos...

(exercise session on Friday!)

Thanks!

