Lecture
“Foundations of Language Science and Technology:
Statistical Natural Language Processing”
Prof. Dr. D. Klakow

Exercise

“Spam, Spam, Spam!” Unsolicited email is commonly referred to as “spam”. Your
task for this exercise session is to build a Naive Bayes classifier that can auto-
matically classify a given document (e.g. incoming email) using the two classes
SPAM and HAM(=not spam).

Subtasks:

1. Download the data from

https://www.lsv.uni-saarland.de/fileadmin/teaching/foundations/ws1415/spam_dat.tar

The package spam_dat.tar contains training and testing data for both
spam and non-spam messages.
You can unpack the package with:

tar -xf spam_dat.tar

2. Build a word-based language model for each of the classes, HAM and SPAM.
The training data are in the files ham_training and spam_training, re-
spectively. Instead of using relative frequencies as your probabilities, smooth
your language models with absolute discounting. Use the following equation:

_ max(N(z;,wk)—d,0) d-n 1
Py(wi|wr) = .. N(xf,wk) + . N(;,wk) VI

where n, = ZI N(ws0g)>0 L- It would be nice if the discounting parameter
d could be optionally specified as a command line option. Use d = 0.7 as
a default value. The file vocab_100000.wl contains the vocabulary with
which you are to build your language models.

3. Write a classifier that classifies each mail contained in the test file
ham_spam_testing. A new mail begins with #x#x# followed by the class
label. Your program should output the predicted class for each mail in the
test file along with the overall number of correctly and incorrectly classi-
fied mails. The predicted class for the test mail is the class which has the
highest probability according to the class-specific language model and the
class prior. In order to prevent an underflow in your classifier use a sum of
logarithms instead of a product of the probabilities:



W := arg max,, log Py(x|wy) + log P(wy,)

where Py(x|wy) is a class-specific language model and P(wy) is a class prior.

General Remarks:

You may implement this exercise in any programming language. However,
we recommend either of the following languages: Perl, Python or Ruby.

Please document your code properly, so that it can be easily tested without
reading the entire source code.

We will start discussing the exercise already on Friday the 5th with a que-
stion/answer session on problems that your have encountered up to that
point. Monday December 8th will also be Q/A.

The final deadline for this exercise is 9/12/2014 11am. Earlier submissions
are welcome.

Send your program to Michael.Wiegand@LSV.Uni-Saarland.De and
Dietrich.Klakow@LSV.Uni-Saarland.De

In case you have further questions with regard to this exercise, please send
your mail to Michael Wiegand and Dietrich Klakow.



