FLST: Statistical Language Models

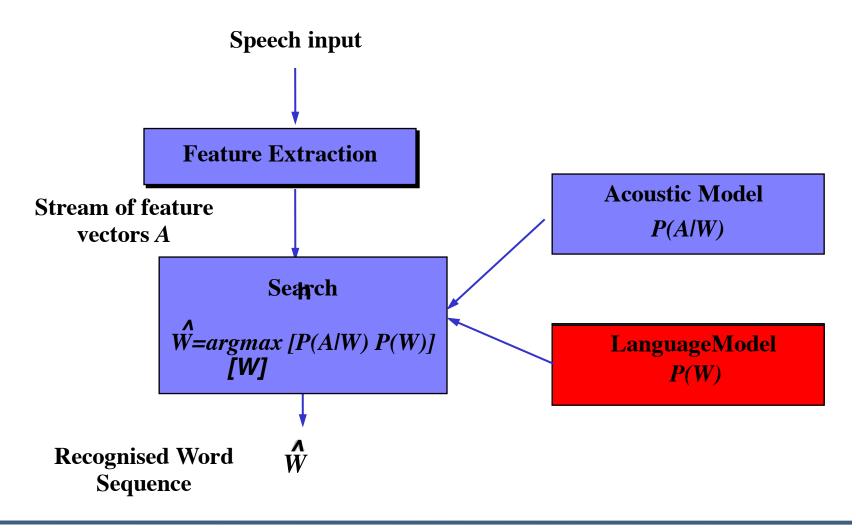
Dietrich Klakow Dietrich.Klakow@LSV.Uni-Saarland.de

Some of the lecture material is covered in other lectures.

Goal: understand all the details such that you have running implementation in the end.

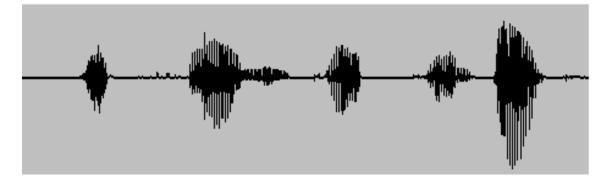
Using Language Models

How Speech Recognition works

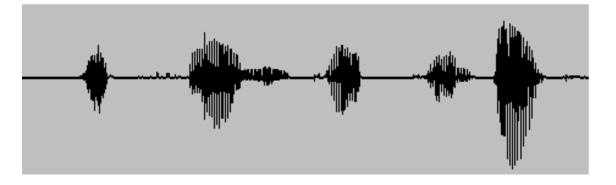


What's in your hometown newspaper ???

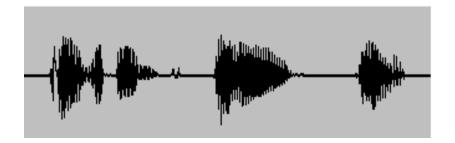
What's in your hometown newspaper today



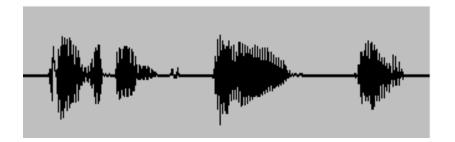
It's raining cats and ???



It's raining cats and dogs



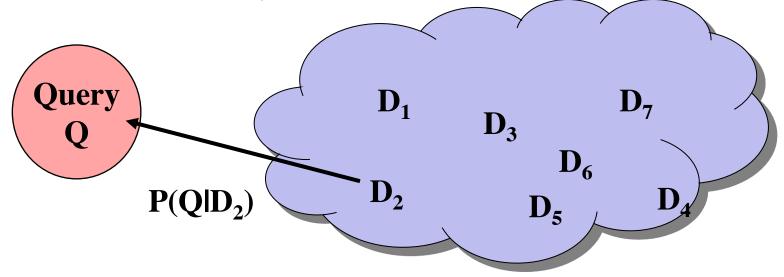
President Bill ???



President Bill Gates

Information Retrieval

•Language model introduced to information retrieval in 1998 by Ponte&Croft



Ranking according to P(Q|D_i)

Measuring the Quality of Language Models

Definition Perplexity

$$PP = P(w_1...w_N)^{-1/N}$$
$$= \exp\left(-\frac{1}{N}\sum_{w,h} N(w,h)\log \P(w \mid h)\right)$$

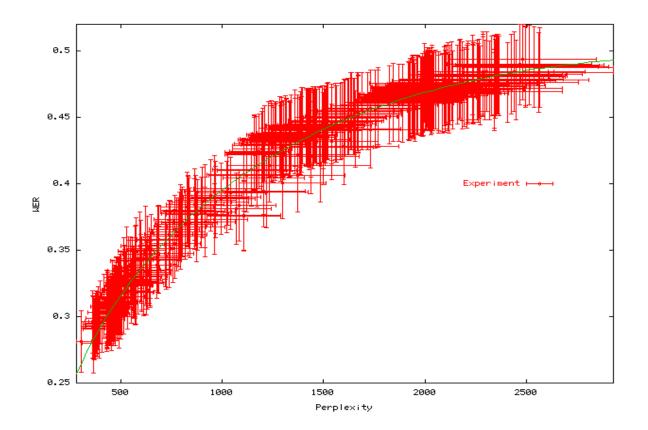
P(w|h): language model

N(w,h): frequency of sequence w,h in some test corpus

N: size of test corpus

Calculate perplexity of uniform distribution (white board)

Perplexity and Word Error Rate



Perplexity and error rate are correlate within error bars

Estimating the Parameters of a Language Model

•Minimize perplexity on training data

$$PP = \exp\left(-\frac{1}{N_{Train}}\sum_{w,h}N_{Train}(w,h)\log \P(w \mid h)\right)$$

Define Likelihood

L=-log(PP)

$$L = \frac{1}{N_{Train}} \sum_{w,h} N_{Train}(w,h) \log \mathbf{P}(w \mid h)$$

Minimizing perplexity → maximizing likelihood How to take normalization constraint into account?

Calculating the maximum likelihood estimate (white board)

Maximum Likelihood Estimate

$$P(w \mid h) = \frac{N_{Train}(w, h)}{N_{Train}(h)}$$

Backing-off and Smoothing

Absolute Discounting

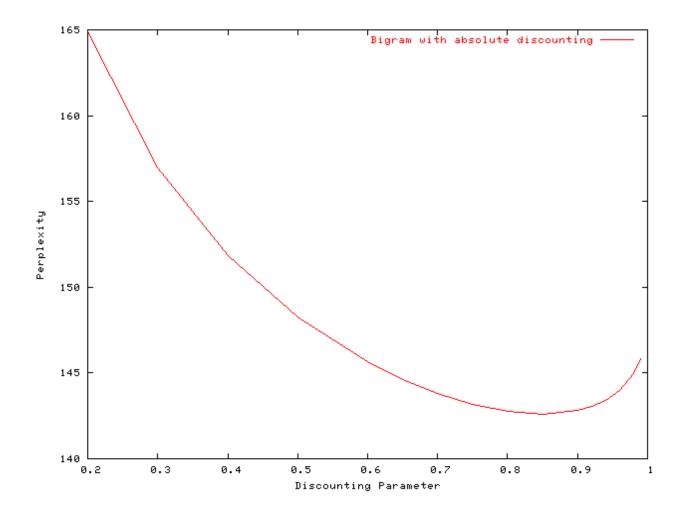
See white board

Backing-Off Language Model

$$P(w \mid h) = \begin{cases} \frac{N(w,h) - d}{N(h)} + \alpha(h)P(w \mid \hat{h}) & \text{für } N(w,h) > 0\\ \alpha(h) P(w \mid \hat{h}) \end{cases}$$

Backing-off weight α(h)
Backing-off distribution P(w|h^) (normalized! Recursive:
again backing off structure with shortened history h^)
Discouting parameter d

Influence of Discounting Parameter



Possible further Improvements

Linear Smoothing

$$P(w_{0} | w_{-1}) = \lambda_{1} \frac{N_{Train}(w_{-1}w_{0})}{N_{Train}(w_{-1})} + \lambda_{2} \frac{N_{Train}(w_{0})}{N_{Train}} + (1 - \lambda_{1} - \lambda_{2}) \frac{1}{V}$$

V: size of vocabulary

Marginal Backing Offf (Kneser Ney Smoothing)

Dedicated backing-off distributions

Usually about 10% to 20% reduction in perplexity

Class Language Models

- Automatically group words into classes
- Map all words in the language model to classes
- Dramatic reduction in number of parameters to estimate
- Usually used in linear with word language model

Summary

How to build a state-of-the art plain vanilla language model:

Trigram

Absolute discounting

Marginal backing-off (Kneser-Ney smoothing)

Linear interpolation with class model

