
Foundations of Language Science and
Technology
Predicate Logic

Stefan Thater
Universität des Saarlandes
FR 4.7 Allgemeine Linguistik

Winter semester 2014/15

Textbooks

L.T.F. Gamut. Logic, Language and Meaning. Volume I:
Introduction to Logic, University of Chicago Press, 1991.

Barbara H. Partee, Alice ter Meulen, Robert E. Wall.
Mathematical Methods in Linguistics. Springer, 1990.

2

Arguments

(1) a. If it rains, then the street is wet
b. It rains
c. Therefore, the street is wet

(2) a. If it rains, then the street is wet
b. The street is not wet
c. Therefore, it does not rain

(3) a. If it rains, then the street is wet
b. The street is wet
c. Therefore, it rains

3

(4) a. All man are mortal
b. Sokrates is a man
c. Therefore, Sokrates is mortal

Arguments

4

∀x(H(x) → M(x))
H(s)
∴ M(s)

■ Non-logical expressions:
■ Set of individual constants: CON

(possibly empty)
■ Set of n-place relation constants: PREDn, for all n ≥ 0

(possibly empty)

■ Infinite set of individual variables: VAR (infinite set)

Predicate Logic – Vocabulary

5

■ Terms: TERM = VAR ∪ CON

■ Atomic formulas:
■ R(t1,…, tn)' for R ∈ PREDn and t1, …, tn ∈ TERM
■ t1 = t2' for t1, t2 ∈ TERM

■ Well-formed formulas (WFF)
■ all atomic formulas are WFF
■ if φ and ψ are WFF, then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ),

(φ ↔ ψ) are WFF
■ if x ∈ VAR, and φ is a WFF, then ∀xφ and ∃xφ are WFF
■ nothing else is a WFF

Predicate Logic – Syntax

6

Quantification

∃xA – “there is an x such that A”

∀xA – “for every x it is the case that A”

7

Exercise – Formalization

(1) John and Mary work
↦ work’(j) ∧ work’(m)

(2) A student works
↦ ∃x(student’(x) ∧ work’(x))

(3) A blond student works
↦ ∃x(student’(x) ∧ blond’(x) ∧ work’(x))

(4) A blond student works hard
↦ ∃x(student’(x) ∧ blond’(x) ∧ work-hard’(x))

8

Exercise – Translate into PL

(1) Mary loves a student
↦ ∃x(student’(x) ∧ love’(m, x))

(2) Every student works
↦ ∀x (student’(x) → work’(x))

(3) Nobody flunked
↦ ¬∃x flunk’(x)

(4) Barking dogs don’t bite
↦ ∀x ((dog’(x) ∧ bark’(x)) → ¬bite’(x))

9

Scope

■ If ∀xφ (∃xφ) is a subformula of a formula ψ, then φ is the
scope of this occurrence of ∀x (∃x) in ψ.

■ We distinguish distinct occurrences of quantifiers as
there are formulae like ∀xA(x) ∧ ∀xB(x).

■ Examples:
■ ∃x (∀y (T(y) ↔ x=y) ∧ F(x))
■ ∀x A(x) ∧ ∀x B(x)

10

Free and Bound Variables

■ An occurrence of a variable x in a formula φ is free in φ
if this occurrence of x does not fall within the scope of a
quantifier ∀x or ∃x in φ.

■ If ∀xψ (∃xψ) is a subformula of φ and x is free in ψ, then
this occurrence of x is bound by this occurrence of the
quantifier ∀x (∃x).

■ Examples:
■ ∀x(A(x) ∧ B(x)) – x occurs bound in B(x)
■ ∀x A(x) ∧ B(x)'– x occurs free in B(x)

■ A sentence is a formula without free variables.

11

■ Expressions of Predicate Logic are interpreted relative to
model structures and variable assignments.

■ Model structures are our “mathematical picture” of the
world. They provide interpretations for the non-logical
symbols (predicate symbols, individual constants).

■ Variable assignments provide interpretations for
variables.

Predicate Logic – Semantics

12

■ Model structure: M = ⟨UM, VM⟩
■ UM is non-empty set – the “universe”
■ VM is an interpretation function assigning individuals (∈UM)

to individual constants and n-ary relations over UM to n-
place predicate symbols:
■ VM(P) ⊆ UMn'' if P is an n-place predicate symbol
■ VM(c) ∈ UM' ' if c is an individual constant

■ Assignment function for variables g: VAR → UM

Model structures

13

Model structures – Example

14

' M '= ⟨UM, VM⟩
' UM '= { r1, r2, h1, h2 }
'VM(vincent)'= r1

' VM(mia)'= r2

' VM(rabbit)'= { r1, r2 }
' VM(white)'= { r2 }
' VM(hat)'= { h1, h2 }
' VM(in)'= { (r1, h1) }

Interpretation (terms)

Interpretation of terms with respect to a model structure
M and a variable assignment g:

' ⎧ VM(α)' if α is an individual constant
⟦α⟧M,g =' ⎨
' ⎩ g(α)' if α is a variable

15

Interpretation (atomic formulas)

Interpretation of (atomic) formulas with respect to a
model structure M and variable assignment g:

'⟦R(t1, ..., tn)⟧M,g'= 1 iff ⟨⟦t1⟧M,g, …, ⟦tn⟧M,g⟩ ∈ VM(R)

' ⟦t1 = t2⟧M,g'= 1 iff ⟦t1⟧M,g = ⟦t2⟧M,g

16

Is Vincent a rabbit?

⟦rabbit(vincent)⟧M,g = 1
■ iff ⟦vincent⟧M,g ∈ VM(rabbit)
■ iff VM(vincent) ∈ VM(rabbit)

17

' M '= (UM, VM)
' UM '= { r1, r2, h1, h2 }
'VM(vincent)'= r1

' VM(mia)'= r2

' VM(rabbit)'= { r1, r2 }
' VM(white)'= { r2 }
' VM(hat)'= { h1, h2 }
' VM(in)'= { (r1, h1) }

Interpretation (connectives)

Connectives are truth-functional: the truth-value of a
complex expession is determined by the truth-values of
their subformulas.

' ⟦¬φ⟧M,g = 1'iff '⟦φ⟧M,g = 0

' ⟦φ ∧ ψ⟧M,g = 1'iff '⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1

' ⟦φ ∨ ψ⟧M,g = 1'iff '⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1

' ⟦φ → ψ⟧M,g = 1'iff '⟦φ⟧M,g = 0 or ⟦ψ⟧M,g = 1

' ⟦φ ↔ ψ⟧M,g = 1'iff '⟦φ⟧M,g = ⟦ψ⟧M,g

18

Truth-functional connectives

■ A connective is truth-functional iff the truth value of
any compound statement obtained by applying that
connective is a function of the individual truth values of
the constituent statements that form the compound.

■ Truth-functional connectives:
substituting sub-expressions with the same truth-value
does not change the truth of the complete expression.

19

Truth-functional connectives

(1) John bumped his head and he [John] is crying

(2) John bumped his head and it is raining

(3) John is crying

(4) It is raining

■ Assume that (3) and (4) have the same truth-value.
■ Then (1) and (2) must have the same truth-value
■ and is a truth-functional connective

20

Truth-functional connectives

(1) John is crying because he [John] bumped his head

(2) John is crying because it is raining
(3) John bumped his head

(4) It is raining

■ Assume that (3) and (4) have the same truth-value.
■ (1) and (2) can have different truth-values
■ ⇒ because is not truth-functional

21

Is Vincent a white rabbit?

⟦rabbit(vincent) ∧ white(vincent)⟧M,g = 1
■ iff ⟦rabbit(vincent)⟧M,g = 1

and ⟦white(vincent)⟧M,g = 1
■ iff VM(vincent) ∈ VM(rabbit)

and VM(vincent) ∈ VM(white)

22

' M '= (UM, VM)
' UM '= { r1, r2, h1, h2 }
'VM(vincent)'= r1

' VM(mia)'= r2

' VM(rabbit)'= { r1, r2 }
' VM(white)'= { r2 }
' VM(hat)'= { h1, h2 }
' VM(in)'= { (r1, h1) }

Interpretation (quantifiers)

We want:
■ ⟦∀xA(x)⟧M,g = 1 iff for every d ∈ UM, d ∈ ⟦A⟧M,g

■ ⟦∃xA(x)⟧M,g = 1 iff there is a d ∈ UM such that d ∈ ⟦A⟧M,g

23

Interpretation (quantifiers)

■ Interpretation of formulas with respect to a model
structure M and variable assignment g:
■ ⟦∃xφ⟧M,g = 1 iff there is a d ∈ UM such that ⟦φ⟧M,g[x/d] = 1
■ ⟦∀xφ⟧M,g = 1 iff for all d ∈ UM, ⟦φ⟧M,g[x/d] = 1

■ g[x/d] is the variable assignment which is identical to g
except that it assigns the individual d to variable x.

' ⎧ d' ' ' ' ' ' if x = y
g[x/d](y) =' ⎨
' ⎩ g[x/d](y) = g(y)' ' if x ≠ y

24

' ⎧ d' ' ' ' ' ' if x = y
g[x/d](y) ='⎨

' ⎩ g[x/d](y) = g(y)'' if x ≠ y

Variable assignments

25

x y z u …

g a b c d …

g[x/a] a b c d …

g[y/a] a a c d …

g[y/g(z)] a c c d …

g[y/a][u/a] a a c a …

g[y/a][y/b] a b c d …

Predicate Logic: Semantics

Interpretation of formulas with respect to a model
structure M and variable assignment g:

' ⟦R(t1, ..., tn)⟧M,g = 1' iff ⟨⟦t1⟧M,g, …, ⟦tn⟧M,g⟩ ∈ VM(R)

' ⟦t1 = t2⟧M,g = 1' iff ⟦t1⟧M,g = ⟦t2⟧M,g

' ⟦¬φ⟧M,g = 1' iff ⟦φ⟧M,g = 0

' ⟦φ ∧ ψ⟧M,g = 1' iff ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1

' ⟦φ ∨ ψ⟧M,g = 1' iff ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1

' ⟦φ → ψ⟧M,g = 1' iff ⟦φ⟧M,g = 0 or ⟦ψ⟧M,g = 1

' ⟦φ ↔ ψ⟧M,g = 1' iff ⟦φ⟧M,g = ⟦ψ⟧M,g

' ⟦∃xφ⟧M,g = 1' iff there is a d ∈ UM such that ⟦φ⟧M,g[x/d] = 1

' ⟦∀xφ⟧M,g = 1' iff for all d ∈ UM, ⟦φ⟧M,g[x/d] = 1

26

Every rabbit is in a hat

⟦∀x(rabbit(x) → ∃y(hat(y) ∧ in(x, y))⟧M, g = 1
■ iff … [⇒ whiteboard]

27

' M '= (UM, VM)
' UM '= { r1, r2, h1, h2 }
'VM(vincent)'= r1

' VM(mia)'= r2

' VM(rabbit)'= { r1, r2 }
' VM(white)'= { r2 }
' VM(hat)'= { h1, h2 }
' VM(in)'= { (r1, h1) }

Not every rabbit is white

⟦¬∀x(rabbit(x) → white(x))⟧M, g = 1
■ iff … [⇒ whiteboard]

28

' M '= (UM, VM)
' UM '= { r1, r2, h1, h2 }
'VM(vincent)'= r1

' VM(mia)'= r2

' VM(rabbit)'= { r1, r2 }
' VM(white)'= { r2 }
' VM(hat)'= { h1, h2 }
' VM(in)'= { (r1, h1) }

More Examples

■ ⟦∃x(∀x A(x) ∧ B(x))⟧M, g = 1 iff …

■ ⟦∀x A(x) ∧ B(x)⟧M, g = 1 iff …

■ ⟦∃x ∀y L(x, y)⟧M, g = 1 iff …

■ ⟦∀y ∃x L(x, y)⟧M, g = 1 iff …

29

True, Valid, Satisfiable

■ A formula φ is true in a model structure M iff
⟦φ⟧M,g = 1 for every variable assignment g

■ A formula φ is valid (⊨ φ) iff φ is true in all model
structures

■ A formula φ is satisfiable iff there is at least one
model structure M such that φ is true in M

30

Satisfiable? Valid?

(1) ∀xF(x) → ∃xF(x)

(2) ∃x∀yΦ → ∀y∃xΦ

(3) ∃x(F(x) ∧ ¬F(x))

(4) ∃xF(x) ∨ ¬F(x)'

31

Entailment

■ A set of formulas Γ is (simultaneously) satisfiable
iff there is a model structure M such that every formula
in Γ is true in M (“M satisfies Γ,” or “M is a model of Γ”)

■ Γ is contradictory if Γ is not satisfiable.

■ Γ entails a formula φ (Γ ⊨ φ) iff φ is true in every
model structure that satisfies Γ

32

Example [⇒ Blackboard]

(1) Not every blond student passed

(2) Not every student passed

33

Some logical laws

Quantifier negation
■ ¬∀xφ ⇔ ∃x¬φ

Quantifier distribution
■ ∀x(φ ∧ Ψ) ⇔ ∀xφ ∧ ∀xΨ
■ ∃x(φ ∨ Ψ) ⇔ ∃xφ ∨ ∃xΨ

Quantifier (in-)dependence
■ ∀x∀yφ ⇔ ∀y∀xφ
■ ∃x∃yφ ⇔ ∃y∃xφ
■ ∃x∀yφ ⇒ ∀y∃xφ' ' (but not vice versa)

34

Some logical laws

Quantifier movement
■ φ → ∀xΨ' ⇔ ∀x(φ → Ψ)
■ φ → ∃xΨ ' ⇔ ∃x(φ → Ψ)
■ ∀xΨ → φ' ⇔ ∀x(Ψ → φ)
■ ∃xΨ → φ' ⇔ ∃x(Ψ → φ)

… provided that x does not occur free in φ

35

