
FLST: Semantics II

FLST: Semantics II

Vera Demberg
vera@coli.uni-sb.de

http://www.coli.uni-saarland.de/courses/FLST/2011/

FLST: Semantics II

Semantics: The Logical Paradigm

! Validation of semantic representations via truth-
conditional interpretation

! Semantically controlled inference through
entailment and deduction

! A rigid model of compositionality

2"

FLST: Semantics II
 3"

Deduction: A Question Answering Example

!  Question: Which element is Thallium said to look like?
!  Support passage: Thallium is a metallic element that

resembles lead.
!  Answer: Lead

FLST: Semantics II
 4"

Watson Again

! We show that "lead" is a correct answer by deriving the
representation of the question instantiated with "lead" (the
"conclusion" or "hypothesis") from the representation of the
answer passage (the "premiss").

! Given:
! metallic(thallium) ∧ element(thallium) ∧ resemble(thallium, lead)

! Wanted:
! element(lead) ∧ look_like(thallium, lead)

FLST: Semantics II
 5"

More Ingredients for the Derivation

! We need some more deduction rules. These are justified
by corresponding entailment relations: truth preserving
transition from premises to conclusion (please, check!).
!  A∧B ⊢ A, A∧B ⊢ B (Conjunction Elimination)
!  A, B ⊢ A∧B (Conjunction Introduction)
!  A, A→B ⊢ B (Modus Ponens)
!  A↔B ⊢A→B, A↔B ⊢B→A (Equivalence Elimination)
! ∀xA ⊢ A[b/x] (Universal Instantiation)

! We need some extra bits of knowledge (axioms, taken
e.g. from a lexical-semantic knowledge base):
!  element(lead)
!  ∀x∀y(resemble(x,y) ↔look_like(x,y))

FLST: Semantics II
 6"

Example Derivation

(1) metallic(th) ∧ element(th) ∧ resemble(th, lead) Premise
(2) resemble(th, lead) 2x Conjunction Elim (1)
(3)  ∀x∀y(resemble(x,y) ↔look_like(x,y)) Axiom
(4)  ∀y(resemble(th,y) ↔look_like(th,y)) Univ. Instantiation th/x, (3)
(5)  resemble(th,lead) ↔look_like(th,lead) Univ. Instantiation lead/y, (4)
(6)  resemble(th,lead) →look_like(th,lead) Equivalence Elim, (5)
(7)  look_like(th,lead) Modus Ponens (2), (6)
(8)  element(lead) Axiom
(9)  element(lead) ∧ look_like(th, lead) Conjunction Intro (7), (8)

FLST: Semantics II

Word Meaning in the Logical Paradigm

! Atomic predicates represent word senses, but are not
very informative in themselves.

! Axioms express word-semantic information:
! semantic relations between different words:
∀x∀y(look_like(x, y) ↔ resemble(x, y))
! semantic properties of words:
∀x∀y(resemble(x, y) → resemble(y, x))

! Where can we get these axioms from???
"Axioms can be read off lexical-semantic taxonomies like WordNet

7"

FLST: Semantics II

WordNet Meaning Relations

8"

dolphin"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

hypernym"rela:on"

FLST: Semantics II

Axioms Expressing Semantic Relations

!  B hypernym of A � ∀x(A(x) → B(x))
 ∀x(dolphin(x) → toothed_whale(x))
 ∀x(toothed_whale(x) → whale(x))
 ∀x(whale(x) → mammal(x))
 ∀x(mammal(x) → vertebrate(x))
 ∀x(vertebrate(x) → animal(x))

9"

dolphin"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

hypernym"rela:on"

FLST: Semantics II

WordNet Meaning Relations

10"

dolphin"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

fish" bird"

common""
dolphin" killer_whale" beluga"

hypernym"rela:on"

hyponym"rela:on"

FLST: Semantics II

Axioms Expressing Semantic Relations

!  B hypernym of A � ∀x(A(x) → B(x))

 ∀x(dolphin(x) → toothed_whale(x))
 ∀x(toothed_whale(x) → whale(x))
 ∀x(whale(x) → mammal(x))
 ∀x(mammal(x) → vertebrate(x))
 ∀x(vertebrate(x) → animal(x))

!  B hyponym of A � ∀x(B(x) → A(x))

 ∀x(common_dolphin(x) → dolphin(x))
 ∀x(killer_whale(x) → dolphin(x)
 ∀x(beluga(x) → dolphin(x))

11"

dolphin"

common""
dolphin" killer_whale" beluga"

hyponym"rela:on"

FLST: Semantics II

WordNet Meaning Relations

12"

dolphin"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

fish" bird"

common""
dolphin" killer_whale" beluga"

hypernymy"rela:on"

hyponymy"rela:on"

cohyponymy"rela:on"

FLST: Semantics II

Axioms Expressing Semantic Relations

! A and B cohyponyms � ∀x(A(x) → ¬B(x))

 ∀x(mammal(x) → ¬fish (x))
 ∀x(fish(x) → ¬ bird (x))
 ∀x(bird(x) → ¬ mammal(x))

 13"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

fish" bird"

cohyponymy"rela:on"

FLST: Semantics II

WordNet Meaning Relations

14"

dolphin"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

fish" bird"

common""
dolphin" killer_whale" beluga"

hypernymy"rela:on"

hyponymy"rela:on"

cohyponymy"rela:on"

FLST: Semantics II

WordNet Meaning Relations

15"

dolphin"

toothed_whale"

whale"

mammal"

vertebrate"

animal"

fish" bird"

common""
dolphin" {killer_whale,"

orca,"sea_wolf}"
beluga"

hypernymy"rela:on"

hyponymy"rela:on"

cohyponymy"rela:on"

synonymy"rela:on"

FLST: Semantics II

Axioms Expressing Semantic Relations

! A and B cohyponyms � ∀x(A(x) → ¬B(x))

 ∀x(mammal(x) → ¬fish (x))
 ∀x(fish(x) → ¬ bird (x))
 ∀x(bird(x) → ¬ mammal(x))

! A and B synonyms � ∀x(A(x) ↔ B(x))

 ∀x(killer_whale(x) ↔ orca(x))
 ∀x(killer_whale(x) ↔ sea_wolf(x))

16"

dolphin"

common""
dolphin" {killer_whale,"

orca,"sea_wolf}"
beluga"

synonymy"rela:on"

FLST: Semantics II

Semantics: The Logical Paradigm

! Validation of semantic representations via truth-
conditional interpretation

! Semantically controlled inference through
entailment and deduction

! A rigid model of compositionality

17"

FLST: Semantics II

Semantic Composition

Principle of Compositionality (Frege’s Principle):

! The meaning of a complex expression is uniquely

determined by the meanings of its sub-expressions and
its syntactic structure.

18"

FLST: Semantics II

! John likes Mary � like(john, mary)

19"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
"

PN"
"

John%

VP"
"

V"
"

NP"
"

PN"
"

likes%

Mary%

20"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
"

PN"
john"

John%

VP"
"

V"
like("_,"_)""

NP"
"

PN"
mary"

likes%

Mary%

21"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
"

V"
like("_,"_)""

NP"
"

PN"
mary"

likes%

Mary%

22"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
"

V"
like("_,"_)""

NP"
mary"

PN"
mary"

likes%

Mary%

23"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
like(_,"mary)"

V"
like("_,"_)""

NP"
mary"

PN"
mary"

likes%

Mary%

24"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
like(john,"mary)"

NP"
john"

PN"
john"

John%

VP"
like(_,"mary)"

V"
like("_,"_)"

NP"
mary"

PN"
mary"

likes%

Mary%

25"

Semantic Composition

FLST: Semantics II

! How do meanings of syntactic complements find their
appropriate argument positions in the composition
process?

! The answer is: λ-Abstraction

Mary%

26"

Semantic Composition

FLST: Semantics II

27"

 λ-Abstraction

!  student: a one-place predicate

!  student(x): a formula containing a free variable

!  λx[student(x)]: a one-place-predicate again: „to be a student“

!  λx[student(x)](john): a formula: application of a one-place predicate
(the λ-expression) to the individual constant "john“,

!  which is equivalent to student(john)

FLST: Semantics II

28"

 Interpretation of λ-expressions

!  ⟦λxA⟧M,g = {a∈UM|⟦A⟧M,g[x/a] = 1}

!  ⟦λx[student(x)]⟧M,g = {a∈UM|⟦student(x)⟧M,g[x/a] = 1}
 = {a∈UM|a∈VM(student)}
 i.e., the set of individuals who are students,
 that is VM(student)

!  ⟦λx[like(x, mary)]⟧M,g = {a∈UM|⟦like(x, mary)⟧M,g[x/a] = 1}

 = {a∈UM|<a, VM(mary)>∈VM(like)} ,
 i.e., the set of individuals who like Mary.
 This is not necessarily identical to the denotation
 of any predicate constant.

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
like(john,"mary)"

NP"
john"

PN"
john"

John%

VP"
like(_,"mary)"

V"
like("_,"_)"

NP"
mary"

PN"
mary"

likes%

Mary%

29"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
like(john,"mary)"

NP"
john"

PN"
john"

John%

VP"
λx[like(x,"mary)]"

V"
like("_,"_)"

NP"
mary"

PN"
mary"

likes%

Mary%

30"

Semantic Composition

FLST: Semantics II

31"

Application of λ-Expressions

 John � john

 likes Mary � λx[like(x, mary)]

 John likes Mary � λx[like(x, mary)](john)

 � like(john, mary)

 ⟦λx[like(x, mary)](john)⟧M,g = 1
 iff ⟦john⟧M,g ∈ ⟦λx[like(x, mary)]⟧M,g
 iff VM(john) ∈ {a∈UM|<a, VM(mary)>∈VM(like)}
 iff <VM(john) , VM(mary)>∈VM(like)

 iff ⟦like(john, mary)⟧M,g = 1

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
λx[like(x,"mary)](john)"

NP"
john"

PN"
john"

John%

VP"
λx[like(x,"mary)]"

V"
like("_,"_)"

NP"
mary"

PN"
mary"

likes%

Mary%

32"

Semantic Composition

�"like(john,"mary)"

FLST: Semantics II

33"

 λ-Conversion

!  λx[student(x)](john) and student(john) are equivalent,
 and so are λx[like(x, mary)](john) and like(john, mary).

!  In general: λxA(b) � A[x/b] , where A[x/b] is the result of replacing

all free occurrences of variable x in A with b. This equivalence holds
independent of the choice of A and b.

!  Thus, we can rewrite any application of a λ-expression λxA to an
argument b by the result of substituting all free occurrences of the λ-
variable x in A with b (without considering truth conditions).

!  λxA(b) � A[x/b] as a rewrite rule is called the rule of λ-conversion or
 λ-reduction.

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
"

PN"
"

John%

VP"
"

V"
"

NP"
"

PN"
"

likes%

Mary%

34"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
"

PN"
john"

John%

VP"
"

V"
like("_,"_)""

NP"
"

PN"
mary"

likes%

Mary%

35"

Semantic Composition

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
"

PN"
john"

John%

VP"
"

V"
λyλx[like(x,"y)]""

NP"
"

PN"
mary"

likes%

Mary%

36"

Semantic Composition: Lexical Information

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
"

V"
λyλx[like(x,"y)]""

"

NP"
"

PN"
mary"

likes%

Mary%

37"

Semantic Composition: Projection

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
"

V"
λyλx[like(x,"y)]""

NP"
mary"

PN"
mary"

likes%

Mary%

38"

Semantic Composition: Projection

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
λyλx[like(x,"y)](mary)""

V"
λyλxlike(x,"y)""

NP"
mary"

PN"
mary"

likes%

Mary%

39"

Semantic Composition: Application

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
"

NP"
john"

PN"
john"

John%

VP"
λx[like(x,"mary)]""

V"
λyλxlike(x,"y)""

NP"
mary"

PN"
mary"

likes%

Mary%

40"

Semantic Composition: Reduction

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
λx[like(x,"mary)](john)"

NP"
john"

PN"
john"

John%

VP"
λxlike(x,"mary)""

V"
λyλxlike(x,"y)""

NP"
mary"

PN"
mary"

likes%

Mary%

41"

Semantic Composition: Application

FLST: Semantics II

! John likes Mary � like(john, mary)

S"
like(john,"mary)"

NP"
john"

PN"
john"

John%

VP"
λxlike(x,"mary)""

V"
λyλxlike(x,"y)""

NP"
mary"

PN"
mary"

likes%

Mary%

42"

Semantic Composition: Reduction

FLST: Semantics II

43"

More λ-Expressions

 “to like Mary”
 λx[like(x, mary)]

 “to be liked by Mary”
 λx[like(mary, x)]

 “to like oneself”
 λx[like(x, x)]

 “to sing and dance”
 λx[sing(x)∧dance(x)]

 “to be somebody, whom everyone likes”
 λx[∀y like(y, x)]

