FLST: Semantics II

Vera Demberg
vera@coli.uni-sb.de

http://www.coli.uni-saarland.de/courses/FLST/2011/

Semantics: The Logical Paradigm

\square Validation of semantic representations via truthconditional interpretation
\square Semantically controlled inference through entailment and deduction
\square A rigid model of compositionality

Deduction: A Question Answering Example

Question: Which element is Thallium said to look like?
\square Support passage: Thallium is a metallic element that resembles lead.
\square Answer: Lead

Watson Again

We show that "lead" is a correct answer by deriving the representation of the question instantiated with "lead" (the "conclusion" or "hypothesis") from the representation of the answer passage (the "premiss").
\square Given:
\square metallic(thallium) \wedge element(thallium) \wedge resemble(thallium, lead)
\square Wanted:
\square element(lead) ^ look_like(thallium, lead)

More Ingredients for the Derivation

\square We need some more deduction rules. These are justified by corresponding entailment relations: truth preserving transition from premises to conclusion (please, check!).
$\square A \wedge B \vdash A, A \wedge B \vdash B \quad$ (Conjunction Elimination)
$\square A, B \vdash A \wedge B$ (Conjunction Introduction)
$\square A, A \rightarrow B \vdash B \quad$ (Modus Ponens)
$\square A \leftrightarrow B \vdash A \rightarrow B, A \leftrightarrow B \vdash B \rightarrow A$ (Equivalence Elimination)
$\square \forall x A \vdash A[b / x]$ (Universal Instantiation)
\square We need some extra bits of knowledge (axioms, taken e.g. from a lexical-semantic knowledge base):
\square element(lead)
$\square \forall x \forall y($ resemble $(x, y) \leftrightarrow$ look_like $(x, y))$

Example Derivation

(1) metallic(th) ^ element(th) ^ resemble(th, lead) Premise
(2) resemble(th, lead)
(3) $\forall x \forall y($ resemble $(x, y) \leftrightarrow$ look_like $(x, y))$
(4) $\quad \forall y($ resemble(th,y) \leftrightarrow look_like(th,y))
(5) resemble(th,lead) \leftrightarrow look_like(th,lead)
(6) resemble(th,lead) \rightarrow look_like(th,lead)
(7) look_like(th,lead)
(8) element(lead)
(9) element(lead) ^ look_like(th, lead)

2x Conjunction Elim (1)
Axiom
Univ. Instantiation th/x, (3)
Univ. Instantiation lead/y, (4)
Equivalence Elim, (5)
Modus Ponens (2), (6)
Axiom
Conjunction Intro (7), (8)

Word Meaning in the Logical Paradigm

\square Atomic predicates represent word senses, but are not very informative in themselves.
\square Axioms express word-semantic information:
\square semantic relations between different words:
$\forall x \forall y$ (look_like(x, y) \leftrightarrow resemble(x, y))
\square semantic properties of words:
$\forall x \forall y($ resemble $(x, y) \rightarrow$ resemble $(y, x))$

Where can we get these axioms from???
\rightarrow Axioms can be read off lexical-semantic taxonomies like WordNet

WordNet Meaning Relations

Axioms Expressing Semantic Relations

$\square B$ hypernym of $A \quad \Rightarrow \forall x(A(x) \rightarrow B(x))$

$$
\forall x(\text { dolphin }(x) \rightarrow \text { toothed_whale }(x))
$$

$\forall x$ (toothed_whale $(x) \rightarrow$ whale (x))
$\forall x($ whale $(x) \rightarrow$ mammal $(x))$
$\forall x($ mammal $(x) \rightarrow$ vertebrate $(x))$
$\forall x($ vertebrate $(x) \rightarrow \operatorname{animal}(x))$

WordNet Meaning Relations

Axioms Expressing Semantic Relations

$\square B$ hypernym of $A \Rightarrow \forall x(A(x) \rightarrow B(x))$
$\forall x($ dolphin $(x) \rightarrow$ toothed_whale $(x))$
$\forall x($ toothed_whale $(x) \rightarrow$ whale $(x))$
$\forall x($ whale $(x) \rightarrow$ mammal $(x))$
$\forall x(\operatorname{mammal}(x) \rightarrow \operatorname{vertebrate}(x))$
$\forall x(\operatorname{vertebrate}(x) \rightarrow$ animal $(x))$
$\square B$ hyponym of $A \Rightarrow \forall x(B(x) \rightarrow A(x))$
$\forall x($ common_dolphin $(x) \rightarrow$ dolphin $(x))$
hyponym relation
dolphin
$\forall x$ (killer_whale $(x) \rightarrow$ dolphin (x) $\forall x($ beluga $(x) \rightarrow$ dolphin $(x))$

WordNet Meaning Relations

Axioms Expressing Semantic Relations

$\square A$ and B cohyponyms $\quad \Rightarrow \forall x(A(x) \rightarrow \neg B(x))$
$\forall x($ mammal $(x) \rightarrow \neg f i s h(x))$
$\forall x($ fish $(x) \rightarrow \neg$ bird $(x))$
$\forall x(\operatorname{bird}(x) \rightarrow \neg$ mammal $(x))$

WordNet Meaning Relations

WordNet Meaning Relations

synonymy relation

Axioms Expressing Semantic Relations

\square A and B cohyponyms $\Rightarrow \forall x(A(x) \rightarrow \neg B(x))$
$\forall x$ (mammal $(x) \rightarrow \neg$ fish (x))
$\forall x($ fish $(x) \rightarrow \neg$ bird $(x))$
$\forall x(\operatorname{bird}(x) \rightarrow \neg$ mammal $(x))$
$\square A$ and B synonyms $\Rightarrow \forall x(A(x) \leftrightarrow B(x))$
$\forall x($ killer_whale $(x) \leftrightarrow$ orca $(x))$
$\forall x($ killer_whale $(x) \leftrightarrow$ sea_wolf $(x))$

Semantics: The Logical Paradigm

\square Validation of semantic representations via truthconditional interpretation
\square Semantically controlled inference through entailment and deduction
\square A rigid model of compositionality

Semantic Composition

Principle of Compositionality (Frege's Principle):
The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and its syntactic structure.

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square How do meanings of syntactic complements find their appropriate argument positions in the composition process?

The answer is: λ-Abstraction

λ-Abstraction

\square student: a one-place predicate
\square student(x): a formula containing a free variable
$\square \lambda x[$ student(x)]: a one-place-predicate again: „to be a student"
$\square \lambda x[s t u d e n t(x)]$ (john): a formula: application of a one-place predicate (the λ-expression) to the individual constant "john",
\square which is equivalent to student(john)

Interpretation of λ-expressions

$\square \llbracket \lambda x A \rrbracket^{M, g}=\left\{a \in U_{M} \backslash \llbracket A \rrbracket^{M, g[x / a]}=1\right\}$

- $\llbracket \lambda x[\operatorname{student}(x)] \rrbracket^{\mathrm{M}, g} \quad=\left\{a \in \mathrm{U}_{\mathrm{M}} \mid \llbracket \operatorname{student}(\mathrm{x}) \rrbracket^{\mathrm{M}, g[\mathrm{~g} / \mathrm{a}]}=1\right\}$
$=\left\{a \in \mathrm{U}_{\mathrm{M}} \mid \mathrm{a} \in \mathrm{V}_{\mathrm{M}}\right.$ (student) $\}$
i.e., the set of individuals who are students, that is V_{M} (student)
$\square \llbracket \lambda x[$ like $(x$, mary $)] \rrbracket^{M, g}=\left\{a \in U_{M} \mid \llbracket\right.$ like $(x$, mary $\left.) \rrbracket^{M, g[x / a]}=1\right\}$
$=\left\{\mathrm{a} \in \mathrm{U}_{\mathrm{M}} \mid<\mathrm{a}, \mathrm{V}_{\mathrm{M}}\right.$ (mary) $>\in \mathrm{V}_{\mathrm{M}}$ (like) $\}$,
i.e., the set of individuals who like Mary.

This is not necessarily identical to the denotation of any predicate constant.

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Application of λ-Expressions

John \Rightarrow john
likes Mary $\Rightarrow \lambda x[l i k e(x$, mary)]
John likes Mary $\Rightarrow \lambda x[$ like(x , mary)](john)

$$
\Leftrightarrow \text { like(john, mary) }
$$

$\llbracket \lambda x[$ like $(x$, mary $)](j o h n) \rrbracket^{M, g}=1$
iff $\llbracket j o h n \rrbracket^{\mathrm{M}, \mathrm{g}} \in \llbracket \lambda \times[$ like $(x$, mary $\left.)]\right]^{\mathrm{M,g}}$
iff V_{M} (john) $\in\left\{\mathrm{a} \in \mathrm{U}_{\mathrm{M}} \mid<\mathrm{a}, \mathrm{V}_{\mathrm{M}}\right.$ (mary) $>\in \mathrm{V}_{\mathrm{M}}$ (like) $\}$
iff $\left\langle\mathrm{V}_{\mathrm{M}}\right.$ (john), V_{M} (mary) $>\in \mathrm{V}_{\mathrm{M}}$ (like)
iff $\llbracket l i k e(j o h n$, mary $) \rrbracket^{\mathrm{M}, \mathrm{g}}=1$

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

λ-Conversion

$\square \lambda x[s t u d e n t(x)](j o h n)$ and student(john) are equivalent, and so are $\lambda x[l i k e(x$, mary)](john) and like(john, mary).

In general: $\lambda \times A(b) \Leftrightarrow A[x / b]$, where $A[x / b]$ is the result of replacing all free occurrences of variable x in A with b. This equivalence holds independent of the choice of A and b .

Thus, we can rewrite any application of a λ-expression $\lambda \times A$ to an argument b by the result of substituting all free occurrences of the λ variable x in A with b (without considering truth conditions).
$\square \lambda x A(b) \Rightarrow A[x / b]$ as a rewrite rule is called the rule of λ-conversion or λ-reduction.

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Lexical Information

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Projection

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Projection

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Application

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Reduction

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Application

\square John likes Mary \Rightarrow like(john, mary)

Semantic Composition: Reduction

\square John likes Mary \Rightarrow like(john, mary)

More λ-Expressions

"to like Mary"
$\lambda x[$ like(x, mary)]
"to be liked by Mary"
$\lambda x[$ like(mary, x)]
"to like oneself"
$\lambda x[l i k e(x, x)]$
"to sing and dance"
$\lambda x[\operatorname{sing}(\mathrm{x}) \wedge$ dance (x)]
"to be somebody, whom everyone likes"
$\lambda x[\forall y \operatorname{like}(y, x)]$

