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Predicate Logic – Interpretation 

!  FOL expressions are interpreted with respect to certain situations 
or states of the world.  
 

!  These are schematically represented by relational structures 
which we call model structures.  
 

!  Different types or FOL expressions (terms, relation symbols, 
formulae) are assigned appropriate constructs from the model 
structure, their "denotations", by an interpretation function.  
 

!  In particular, formulae denote truth values. 
 

!  The truth conditions of a formula are considered its meaning. 

2"



FLST: Semantics I 
 

Model Structure, Example 
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Model Structures 
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! Model structure: M = ⟨UM, VM⟩ 
! UM is non-empty set – the �universe� 
! VM is an interpretation function assigning individuals 

(�UM) to individual constants and n-ary relations over 
UM to n-place predicate symbols: 
•  VM(P) � UMn  if P is an n-place predicate symbol 
•  VM(c) � UM    if c is an individual constant 

 

! Assignment function for variables g: VAR → UM 
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!  Input sentence is: “Bill works”  

! Semantic construction returns the formula  work(bill) 

! Predicate logic interpretation gives the truth conditions: 
  ⟦work(bill)⟧M,g = 1   
  iff  ⟦bill⟧M,g ∈ VM (work) 
  iff  VM (bill) ∈ VM(work)   

!  “work(bill)” is true in a model structure M iff the object denoted by 
“bill” in M is member of the set denoted by “work” in M 

 
            

Computing Truth Conditions Computing Truth Conditions (1) 
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⟦work(bill)⟧M,g = 1   iff    VM (bill) ∈ VM(work) 
 
Let M=M1:       Let M=M2:  

 VM1 (bill) ∈ VM1(work),     VM2 (bill) ∉ VM2(work),  
 so ⟦work(bill)⟧M1,g = 1     so ⟦work(bill)⟧M2,g = 0    
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Computing Truth Values (1) 
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Computing Truth Conditions (2) 

! “Every student works”  � ∀x(student(x) → work(x)) 

! ⟦∀x(student(x) → work(x))⟧M,g = 1   
  iff  ⟦student(x) → work(x) ⟧M,g[x/a] = 1 for every a ∈ UM  
       ⟦student(x)⟧M,g[x/a] = 0    or  ⟦work(x)⟧M,g[x/a]= 1  
       iff ⟦x⟧M,g[x/a] ∉ VM (student) or  ⟦x⟧M,g[x/a]∈ VM (work) 
          iff g[x/a] (x) ∉ VM (student) or  g[x/a] (x) ∈ VM (work) 
       iff  a ∉ VM (student) or  a ∈ VM (work) 

! ∀x(student(x) → work(x))  is true in M iff for every a ∈ UM  
    a ∉ VM (student) or  a ∈ VM (work) 

! which is equivalent to: VM (student) ⊆ VM (work) 

7"



FLST: Semantics I 
 8"

⟦∀x(student(x) → work(x))⟧M,g = 1 iff  VM (student) ⊆ VM (work) 
 
Let M=M1:        Let M=M2:  

VM1 (student) ⊆ VM1 (work),    VM2 (student) ⊈ VM2(work),  
so ⟦∀x(student(x)→work(x))⟧M1,g =1  so ⟦∀x(student(x)→work(x))⟧M2,g =0  
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Computing Truth Values (2) 
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In-class exercise 

“A child smiles.” 
! How can this be expressed in FOL? 
! compute truth-conditions 
! draw a model structure where this is correct 
! specify the model structure formally 
! draw a model world where this is incorrect (and 

specify it formally) 
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Reminder: 
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Interpretation of formulas with respect to a model structure M 
and variable assignment g: 

!   ⟦R(t1, ..., tn)⟧M,g = 1  iff ⟨⟦t1⟧M,g, …, ⟦tn⟧M,g⟩ � VM(R) 
!   ⟦t1 = t2⟧M,g = 1  iff ⟦t1⟧M,g = ⟦t2⟧M,g 

!   ⟦¬φ⟧M,g = 1  iff ⟦φ⟧M,g = 0 
!   ⟦φ � ψ⟧M,g = 1  iff ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1 
!   ⟦φ � ψ⟧M,g = 1  iff ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 
!   ⟦φ → ψ⟧M,g = 1  iff ⟦φ⟧M,g = 0 or ⟦ψ⟧M,g = 1  
!   ⟦φ ↔ ψ⟧M,g = 1  iff ⟦φ⟧M,g = ⟦ψ⟧M,g  
!   ⟦∃xφ⟧M,g = 1  iff there is a d � UM such that ⟦φ⟧M,g[x/d] = 1  
!   ⟦∀xφ⟧M,g = 1  iff for all d � UM, ⟦φ⟧M,g[x/d] = 1  
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The Most Certain Principle of Semantics 

 

!  "For two sentences A and B, if in some possible situation A 
is true and B is false, A and B must have different 
meanings." (M. Cresswell, 1975) 

 
Applied to logical representations of NL sentences: 
 
! For a logical formula α and a sentence A: If in some 

possible situation corresponding to a model structure M  
A is true, and α is not, or vice versa, then α is not an 
appropriate meaning representation for A. 
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Examples 

 

! Dolphins live in pods 
 
! ∀d (dolphin(d)→ ∃p (pod(p) ∧ live-in (d,p))) 
! ∀p (pod(p) → ∃d (dolphin(d) ∧ live-in (d,p))) 

! Germans drink beer 
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Semantics: The Logical Paradigm 

 
! Validation of semantic representations via truth-

conditional interpretation 

! Semantically controlled inference 

! A model of compositionality 

13"
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Truth, Validity, Entailment 

! A formula A is true in model structure M 
  iff ⟦A⟧M,g  = 1 for every variable assignment g.  

! A formula A is valid (⊨ A)  
iff A is true in every model structure. 

! A set of formulas Γ entails formula A (Γ ⊨ A) iff A is true in 
in every model structure M in which all A ∈ Γ are true 

! The members of Γ are called premises or hypotheses 
! A is called the conclusion 
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!  student(bill), ∀x(student(x) → work(x)) ⊨ work(bill) 
 
!  For every M :  

 student(bill) is true in M    iff VM (bill) ∈ VM(student) 

 ∀x(student(x) → work(x)) is true in M iff  VM (student) ⊆ VM (work) 
 

!  From  VM (bill) ∈ VM(student) and VM (student) ⊆ VM (work), it follows that  
 VM (bill) ∈ VM(work)   (basic set-theoretic inference) 

 
! Now, VM (bill) ∈ VM(work) is just the truth condition for work(bill).  

!  Therefore: In every model structure M satisfying student(bill) and 
∀x(student(x)→work(x)), the formula work(bill) is true:  Valid entailment.  

Determining Entailment 
?"
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! We just have proved: 

 student(bill), ∀x(student(x) → work(x)) ⊨ work(bill) 
 
! We did this independent of the choice of non-logical 

constants. Thus, the result can be generalized to arbitrary 
instantiations of the following entailment scheme (b 
standing for any individual constant, and F for any one-
place predicate). 

 F(b), ∀x(F(x) → G(x)) ⊨ G(b) 
 
 
 

 

Entailment and Deduction 
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! The proof of the entailment F(b), ∀x(F(x) → G(x)) ⊨ G(b) 
justifies the safe application of the following deduction rule: 

 F(b), ∀x(F(x) → G(x)) � G(b)  
 which is actually one of the „Aristotelian syllogisms“ 

 

! Application of a deduction rule Γ � A: Whenever we find a 
set of formulas in a (FOL) database that match Γ,  
! we may safely („salva veritate“) add the appropriate instantiation of 

A to the database. We may do this without looking into the semantic 
interpretation of the involved formulas. 

 
 
 
 

 

Entailment and Deduction 
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! work(john) → work(bill), ¬work(bill) ⊨ ¬work(john) 
 
! To check entailment, it is sufficient to inspect four different 

variants of model structures, i.e., those where   

!  ⟦work(john)⟧M,g = 1 and ⟦work(bill)⟧M,g = 1  
!  ⟦work(john)⟧M,g = 1 and ⟦work(bill)⟧M,g = 0  
!  ⟦work(john)⟧M,g = 0 and ⟦work(bill)⟧M,g = 1  
!  ⟦work(john)⟧M,g = 0 and ⟦work(bill)⟧M,g = 0  

Determining Entailment (2) 
?
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! With the truth-table method, we show that  

 whenever ⟦work(john) → work(bill)⟧M,g = ⟦¬work(bill)⟧M,g = 1,  
 also ⟦¬work(john)⟧M,g = 1:  Valid entailment. 

 
! The result is independent of the specific atomic formulas. 

Therefore we can generalise the result to: 

! A→B, ¬B ⊨ ¬A, which justifies  A→B, ¬B � ¬A as a deduction rule  
 (“Modus Tollens”). 

Determining Entailment (2) 
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Deduction Calculi 

! Computing entailment via semantic interpretation is 
inefficient and in many cases infeasible. 

! Deduction calculi (or proof theoretic systems) provide a 
strictly syntactic way of inference modeling, through 
rewrite of logical formulae.  

 
! We say that A is derivable from a set of formulas Γ (Γ � A) 

in a given deduction system, iff one can obtain A starting 
from Γ, by using deduction rules (and possibly axioms) of 
that deduction system.  
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Soundness and Completeness 

!  Truth-conditional interpretation of the logical formalism enable us to 
determine whether a given deduction system is  
! sound, i.e., derives only those formula A from a set of premises Γ 

which are entailed by Γ. 
! complete, i.e., allows to derive all formulas entailed by Γ. 

!  In short: 
! Soundness: If Γ ⊢ A, then Γ ⊨ A. 
! Completeness: If Γ ⊨ A, then Γ ⊢ A. 

!  Sound and complete deduction systems derive all and only the 
truth-conditionally entailed formulas from any set of premises. 

!  There are many possible deduction systems (choices between 
collections of deduction rules), but there is only one entailment 
concept for First-Order Predicate Logic. 
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Theorem Provers 

! The problem of FOL entailment checking is very hard:  
It is even undecidable. 

! However, automated deduction systems have been 
optimized through decades, and have become very 
efficient. They are called theorem provers, because their 
original motivation was mathematical theorem proving. 

 
 

 


