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Predicate Logic — Interpretation

0 FOL expressions are interpreted with respect to certain situations
or states of the world.

U These are schematically represented by relational structures
which we call model structures.

O Different types or FOL expressions (terms, relation symbols,
formulae) are assigned appropriate constructs from the model
structure, their "denotations”, by an interpretation function.

O In particular, formulae denote truth values.

O The truth conditions of a formula are considered its meaning.
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Model Structure, Example

mary
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Model Structures

JModel structure: M = (Um, Vw)
QUw is non-empty set — the “universe”

dVwm is an interpretation function assigning individuals
(€ Uwm) to individual constants and n-ary relations over
Uwm to n-place predicate symbols:
 Vu(P) & UnM" if P is an n-place predicate symbol
* Vm(c) € Um if ¢ is an individual constant

JAssignment function for variables g: VAR — Uwm

:C“:O: bes FLST: Semantics | 4

SAARLANDES




Computing Truth Conditions (1)

J Input sentence is: “Bill works”
(J Semantic construction returns the formula work(bill)

[ Predicate logic interpretation gives the truth conditions:
[work(bill)JM-9 = 1
iff [bill]Me e V,, (work)
iff Vy, (bill) € V(work)

J “work(bill)” is true in a model structure M iff the object denoted by
“bill” in M is member of the set denoted by “work™ in M
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Computing Truth Values (1)

[work(bill)]Me= 1 iff  V,, (bill) € V,,(work)

Let M=M1: Let M=M2:
V1 (bill) € V,,4(work), Ve (bill) & Vyo(work),
so [work(bill)JM1.9 = 1 so [work(bill)]M29 =0
M1 M?2

bill bill

teacher teacher

mary work mary
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Computing Truth Conditions (2)

 “Every student works” = Vx(student(x) — work(x))

[ Vx(student(x) — work(x))]™-9 = 1
iff [student(x) — work(x) M:9¥al= 1 for every a € Um
[student(x)]Me¥al=0 or [work(x)JM.9al= 1
iff [x]M9al ¢ V,, (student) or [x]Me¥ale V,, (work)
iff g[x/a] (x) ¢ V,, (student) or g[x/a] (x) e V, (work)
iff a ¢V, (student) or ae V,,(work)

D‘v’x(student(x) — work(x)) is true in M iff for every a € Uwm
a ¢ V,,(student) or ae V,, (work)

 which is equivalent to: V,, (student) C V,, (work)
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Computing Truth Values (2)

[vx(student(x) — work(x))]M9 = 1 iff V,,(student) C V,, (work)

Let M=M1: Let M=M2:

V1 (student) € V,,, (work), Vo (student) ¢ V,,(work),
so [vx(student(x)—work(x))IM9=1  so [vx(student(x)—work(x))]M29 =0

M1 M2
bill bill

teacher teacher

mary mary

i~
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In-class exercise

“A child smiles.”

dHow can this be expressed in FOL?

d compute truth-conditions

ddraw a model structure where this is correct
specify the model structure formally

ddraw a model world where this is incorrect (and
specify it formally)
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Interpretation of formulas with respect to a model structure M
and variable assignment g:

Q [R(ty, ..., tn)IM9 = 1 iff ([t IS, ..., [t IM9) € VM(R)
a [t = to]M9 = 1 iff [tyM9 = [t2]M9
[~@IMe = 1 iff [p]Me =0
[@ A wIM9 =1 iff [IM9 = 1 and [WI™9 = 1
[ V wIM9 =1 iff [@I]M9 =1 or [wIM9 = 1
[¢ — wI™9 =1 iff [@]"9 = 0 or [W]"9 = 1
[¢ « wIMe =1 iff []M9 = [y]M9
[axeIM9 = 1 iff there is a d € Um such that [@]M-9/d] = 1
[vxeIMe =1 iff for all d € Uwm, [IMexdl = 1

U000 D0D0D D
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The Most Certain Principle of Semantics

Q "For two sentences A and B, if in some possible situation A
IS frue and B is false, A and B must have different
meanings." (M. Cresswell, 1975)

Applied to logical representations of NL sentences:

d For a logical formula a and a sentence A: If in some
possible situation corresponding to a model structure M
As true, and a is not, or vice versa, then a is not an
appropriate meaning representation for A.
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U Dolphins live in pods

4 Vd (dolphin(d)— dp (pod(p) A live-in (d,p)))
d Vp (pod(p) — 3d (dolphin(d) A live-in (d,p)))

1 Germans drink beer
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Semantics: The Logical Paradigm

Validation of semantic representations via truth-
conditional interpretation

dSemantically controlled inference

A model of compositionality
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Truth, Validity, Entailment

J A formula A is true in model structure M
iff [AJM9 = 1 for every variable assignment g.

O Aformula Ais valid (F A)
iff A'is true in every model structure.

1 A set of formulas I'" entails formula A (I' = A) iff Ais true in
In every model structure M in which all A € T are true

 The members of I" are called premises or hypotheses
O Ais called the conclusion
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Determining Entailment

L student(bill), vx(student(x) — work(x)) I; work(bill)

J Forevery M :
student(bill) is true in M iff V, (bill) € V\,(student)

vx(student(x) — work(x)) is true in M iff V,,(student) € V,, (work)

d From V,, (bill) € V,,(student) and V,, (student) C V,, (work), it follows that
Vy, (bill) e V,,(work) (basic set-theoretic inference)

d Now, V,, (bill) € V,,(work) is just the truth condition for work(bill).

1 Therefore: In every model structure M satisfying student(bill) and
vXx(student(x)—work(x)), the formula work(bill) is true: Valid entailment.
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Entailment and Deduction

(JWe just have proved:
student(bill), vx(student(x) — work(x)) &= work(bill)

(dWe did this independent of the choice of non-logical
constants. Thus, the result can be generalized to arbitrary
instantiations of the following entailment scheme (b
standing for any individual constant, and F for any one-
place predicate).

F(b), vx(F(x) — G(x)) = G(b)
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Entailment and Deduction

( The proof of the entailment F(b), vx(F(x) — G(x)) & G(b)
justifies the safe application of the following deduction rule:

F(b), vx(F(x) — G(x)) - G(b)
which is actually one of the ,Aristotelian syllogisms*

(J Application of a deduction rule I - A: Whenever we find a

set of formulas in a (FOL) database that match T,

J we may safely (,salva veritate*) add the appropriate instantiation of
A to the database. We may do this without looking into the semantic
interpretation of the involved formulas.
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Determining Entailment (2)

?

Jwork(john) — work(bill), “work(bill) = =work(john)

(1 To check entailment, it is sufficient to inspect four different
variants of model structures, i.e., those where

 [work(john)IM9 = 1 and [work(bill)]-9 = 1
 [work(john)IM9 = 1 and [work(bill)]*-¢ = 0
J [work(john)]¢ = 0 and [work(bill)]M9 = 1
J [work(john)IM9 = 0 and [work(bill)]*-¢ = 0
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Determining Entailment (2)

JWith the truth-table method, we show that
whenever [work(john) — work(bill)]M-9 = [~work(bill)JM-9 = 1,
also ["work(john)]M9 = 1: Valid entailment.

(d The result is independent of the specific atomic formulas.
Therefore we can generalise the result to:

3 A—B, B = -A, which justifies A—B, =B = =A as a deduction rule
(“Modus Tollens”).
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Deduction Calculi

O Computing entailment via semantic interpretation is
inefficient and in many cases infeasible.

J Deduction calculi (or proof theoretic systems) provide a
strictly syntactic way of inference modeling, through
rewrite of logical formulae.

1 We say that A is derivable from a set of formulas I" (I' - A)
in a given deduction system, iff one can obtain A starting
from I', by using deduction rules (and possibly axioms) of
that deduction system.
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Soundness and Completeness

d

Truth-conditional interpretation of the logical formalism enable us to
determine whether a given deduction system is

O sound, i.e., derives only those formula A from a set of premises I
which are entailed by I'.

L complete, i.e., allows to derive all formulas entailed by T'.

In short:
J Soundness: IfI' - A, then T EA.
O Completeness: IfT'=A, then T - A.

Sound and complete deduction systems derive all and only the
truth-conditionally entailed formulas from any set of premises.

There are many possible deduction systems (choices between
collections of deduction rules), but there is only one entailment
concept for First-Order Predicate Logic.
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Theorem Provers

 The problem of FOL entailment checking is very hard:
It is even undecidable.

U However, automated deduction systems have been
optimized through decades, and have become very
efficient. They are called theorem provers, because their
original motivation was mathematical theorem proving.
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