FLST: Semantics I

Vera Demberg vera@coli.uni-sb.de

http://www.coli.uni-saarland.de/courses/FLST/2011

(all slides based on earlier years' slides by Manfred Pinkal)

Predicate Logic – Interpretation

- □ FOL expressions are interpreted with respect to certain situations or states of the world.
- □ These are schematically represented by relational structures which we call model structures.
- Different types or FOL expressions (terms, relation symbols, formulae) are assigned appropriate constructs from the model structure, their "denotations", by an interpretation function.
- □ In particular, formulae denote truth values.
- □ The truth conditions of a formula are considered its meaning.

Model Structure, Example

Model Structures

Dodel structure: $M = \langle U_M, V_M \rangle$

 $\Box U_M$ is non-empty set – the "universe"

- $\Box V_M$ is an interpretation function assigning individuals $(\subseteq U_M)$ to individual constants and n-ary relations over U_M to n-place predicate symbols:
 - $V_M(P) \subseteq U_M{}^n$ if P is an n-place predicate symbol
 - $V_M(c) \in U_M$ if c is an individual constant

 $\label{eq:assignment function for variables g: VAR \rightarrow U_M$

Computing Truth Conditions (1)

□ Input sentence is: "Bill works"

Semantic construction returns the formula work(bill)

□ Predicate logic interpretation gives the truth conditions: $\begin{bmatrix} work(bill) \end{bmatrix}^{M,g} = 1$ iff $\begin{bmatrix} bill \end{bmatrix}^{M,g} \in V_M$ (work) iff V_M (bill) $\in V_M$ (work)

"work(bill)" is true in a model structure M iff the object denoted by "bill" in M is member of the set denoted by "work" in M

Computing Truth Values (1)

 $\llbracket work(bill) \rrbracket^{M,g} = 1 \quad \text{iff} \quad V_M(bill) \in V_M(work)$

Let M=M1:

 V_{M1} (bill) $\in V_{M1}$ (work), so $[work(bill)]^{M1,g} = 1$ Let M=M2:

 V_{M2} (bill) ∉ V_{M2} (work), so [[work(bill)]]^{M2,g} = 0

FLST: Semantics I

Computing Truth Conditions (2)

 \Box which is equivalent to: V_M (student) $\subseteq V_M$ (work)

Computing Truth Values (2)

 $\llbracket \forall x(student(x) \rightarrow work(x)) \rrbracket^{M,g} = 1 \text{ iff } V_M(student) \subseteq V_M(work)$

Let M=M1:

 V_{M1} (student) ⊆ V_{M1} (work), so $[∀x(student(x) \rightarrow work(x))]^{M1,g} = 1$ Let M=M2:

$$\begin{split} & \mathsf{V}_{\mathsf{M2}} \,(\text{student}) \not\subseteq \, \mathsf{V}_{\mathsf{M2}}(\text{work}), \\ & \mathsf{so} \, [\![\forall x(\texttt{student}(x) \rightarrow \texttt{work}(x))]^{\mathsf{M2},\mathsf{g}} \, = \, 0 \end{split}$$

FLST: Semantics I

In-class exercise

- "A child smiles."
- □ How can this be expressed in FOL?
- Compute truth-conditions
- □ draw a model structure where this is correct
- □ specify the model structure formally
- draw a model world where this is incorrect (and specify it formally)

Reminder:

Interpretation of formulas with respect to a model structure M and variable assignment g:

 $[[R(t_1, ..., t_n)]]^{M,g} = 1$ iff $\langle [[t_1]]^{M,g}, ..., [[t_n]]^{M,g} \rangle \in V_M(R)$ $[t_1 = t_2]^{M,g} = 1$ iff $[t_1]^{M,g} = [t_2]^{M,g}$ $[\neg \phi]^{M,g} = 1$ iff $[\phi]^{M,g} = 0$ $\llbracket \phi \land \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = 1$ and $\llbracket \psi \rrbracket^{M,g} = 1$ $[\![\phi \lor \psi]\!]^{M,g} = 1$ iff $[\![\phi]\!]^{M,g} = 1$ or $[\![\psi]\!]^{M,g} = 1$ $\llbracket \phi \rightarrow \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = 0$ or $\llbracket \psi \rrbracket^{M,g} = 1$ $\llbracket \phi \leftrightarrow \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$ $[\exists x \phi]^{M,g} = 1$ iff there is a $d \in U_M$ such that $[\phi]^{M,g[x/d]} = 1$ $\llbracket \forall x \phi \rrbracket^{M,g} = 1$ iff for all $d \in U_M$, $\llbracket \phi \rrbracket^{M,g[x/d]} = 1$

The Most Certain Principle of Semantics

For two sentences A and B, if in some possible situation A is true and B is false, A and B must have different meanings." (M. Cresswell, 1975)

Applied to logical representations of NL sentences:

For a logical formula α and a sentence A: If in some possible situation corresponding to a model structure M A is true, and α is not, or vice versa, then α is not an appropriate meaning representation for A.

Dolphins live in pods

□ $\forall d$ (dolphin(d)→ $\exists p$ (pod(p) \land live-in (d,p))) □ $\forall p$ (pod(p) → $\exists d$ (dolphin(d) \land live-in (d,p)))

Germans drink beer

Semantics: The Logical Paradigm

□ Validation of semantic representations via truthconditional interpretation

□ Semantically controlled inference

□ A model of compositionality

Truth, Validity, Entailment

- □ A formula A is true in model structure M iff [A]^{M,g} = 1 for every variable assignment g.
- □ A formula A is valid (⊨ A) iff A is true in every model structure.
- □ A set of formulas Γ entails formula A ($\Gamma \models A$) iff A is true in in every model structure M in which all A ∈ Γ are true

The members of Γ are called premises or hypotheses
 A is called the conclusion

Determining Entailment

□ student(bill), $\forall x(student(x) \rightarrow work(x)) \stackrel{?}{\models} work(bill)$

 For every M : student(bill) is true in M iff V_M (bill) ∈ V_M(student)
 ∀x(student(x) → work(x)) is true in M iff V_M (student) ⊆ V_M (work)

□ From V_M (bill) $\in V_M$ (student) and V_M (student) $\subseteq V_M$ (work), it follows that V_M (bill) $\in V_M$ (work) (basic set-theoretic inference)

□ Now, V_M (bill) $\in V_M$ (work) is just the truth condition for work(bill).

☐ Therefore: In every model structure M satisfying student(bill) and $\forall x(student(x) \rightarrow work(x))$, the formula work(bill) is true: Valid entailment.

Entailment and Deduction

We just have proved:

student(bill), $\forall x(student(x) \rightarrow work(x)) \vDash work(bill)$

❑ We did this independent of the choice of non-logical constants. Thus, the result can be generalized to arbitrary instantiations of the following entailment scheme (b standing for any individual constant, and F for any one-place predicate).

 $\mathsf{F}(\mathsf{b}),\,\forall x(\mathsf{F}(x)\to G(x))\vDash G(\mathsf{b})$

Entailment and Deduction

□ The proof of the entailment F(b), ∀x(F(x) → G(x)) ⊨ G(b) justifies the safe application of the following deduction rule:
F(b), ∀x(F(x) → G(x)) ⊢ G(b)

which is actually one of the "Aristotelian syllogisms"

- □ Application of a deduction rule $\Gamma \vdash A$: Whenever we find a set of formulas in a (FOL) database that match Γ ,
 - we may safely ("salva veritate") add the appropriate instantiation of A to the database. We may do this without looking into the semantic interpretation of the involved formulas.

Determining Entailment (2)

?work(john) → work(bill), ¬work(bill) ⊨ ¬work(john)

To check entailment, it is sufficient to inspect four different variants of model structures, i.e., those where

- $\square [work(john)]^{M,g} = 1 and [work(bill)]^{M,g} = 1$
- $\square [work(john)]^{M,g} = 1 and [work(bill)]^{M,g} = 0$
- $\square [work(john)]^{M,g} = 0 and [work(bill)]^{M,g} = 1$
- $\square [work(john)]^{M,g} = 0 and [work(bill)]^{M,g} = 0$

Determining Entailment (2)

With the truth-table method, we show that whenever [work(john) → work(bill)]^{M,g} = [¬work(bill)]^{M,g} = 1, also [¬work(john)]^{M,g} = 1: Valid entailment.

The result is independent of the specific atomic formulas. Therefore we can generalise the result to:

A→B, ¬B ⊨ ¬A, which justifies A→B, ¬B ⊢ ¬A as a deduction rule ("Modus Tollens").

Deduction Calculi

Computing entailment via semantic interpretation is inefficient and in many cases infeasible.

Deduction calculi (or proof theoretic systems) provide a strictly syntactic way of inference modeling, through rewrite of logical formulae.

We say that A is derivable from a set of formulas Γ (Γ ⊢ A) in a given deduction system, iff one can obtain A starting from Γ, by using deduction rules (and possibly axioms) of that deduction system.

Soundness and Completeness

- Truth-conditional interpretation of the logical formalism enable us to determine whether a given deduction system is
 - Sound, i.e., derives only those formula A from a set of premises Γ which are entailed by Γ .
 - \Box complete, i.e., allows to derive all formulas entailed by Γ .

□ In short: □ Soundness: If $\Gamma \vdash A$, then $\Gamma \models A$. □ Completeness: If $\Gamma \models A$, then $\Gamma \vdash A$.

- □ Sound and complete deduction systems derive all and only the truth-conditionally entailed formulas from any set of premises.
- There are many possible deduction systems (choices between collections of deduction rules), but there is only one entailment concept for First-Order Predicate Logic.

Theorem Provers

The problem of FOL entailment checking is very hard: It is even undecidable.

However, automated deduction systems have been optimized through decades, and have become very efficient. They are called theorem provers, because their original motivation was mathematical theorem proving.

