Introduction to Probability Theory 2

Clayton Greenberg
CoLi, CS, MMCI, LSV, CRC 1102 (IDeaL) B4

October 23, 2014

Schedule

22.10.2014 Calculate the probability of a given parse
23.10.2014 Solve the medical test Bayes' Rule problem
27.10.2014 Create a code for simplified Polynesian
29.10.2014 Identify types of machine learning problems
31.10.2014 Find a regression line for 2D data

From last time

- 1. probability = what you want / what is possible
- 2. "and" = * (times) [if independent]
- 3. "or" = + (plus) [if mutually exclusive]
- 4. logarithms = exponents
- 5. surprisal = the negative logarithm of probability

Conditional probability example

Definition of conditional probability

- $p(A \mid B) = p(A, B) / p(B)$
- conditional = joint / normalizer
- "How likely is A, given that B happens?"
- "Germany wins the game" is a *predicate* that describes event **A** (a set of outcomes).

Conditional probability and independence

- $p(A \mid B) = p(A, B) / p(B)$
- Independent: p(A, B) = p(A)*p(B)
- Then, $p(A \mid B) = p(A)*p(B) / p(B)$
- p(A | B) = p(A)

Conditional independence

- $p(A, B \mid C) = p(A \mid C)*p(B \mid C)$
- Conditional independence does NOT imply independence.
- Independence does NOT imply conditional independence.

The chain rule

- $p(A_3, A_2, A_1) = p(A_3 \mid A_2, A_1) * p(A_2 \mid A_1) * p(A_1)$
- $p(A_n, ..., A_1) = p(A_n \mid A_{n-1}, ..., A_1) * p(A_{n-1}, ..., A_1)$
- chain rule = the conditional of the last times the joint of the rest

$$P\left(\bigcap_{k=1}^{n} A_k\right) = \prod_{k=1}^{n} P\left(A_k \middle| \bigcap_{j=1}^{k-1} A_j\right)$$

Probabilistic context free grammar (PCFG)

 $S \rightarrow NP VP (1.0)$

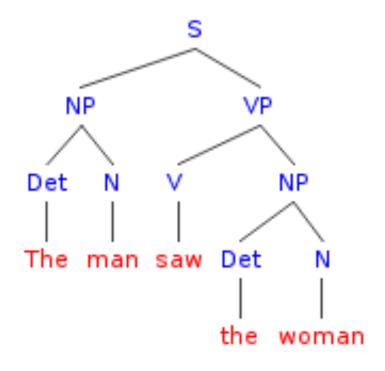
 $NP \rightarrow Det N (0.8)$

 $NP \rightarrow NP PP (0.2)$

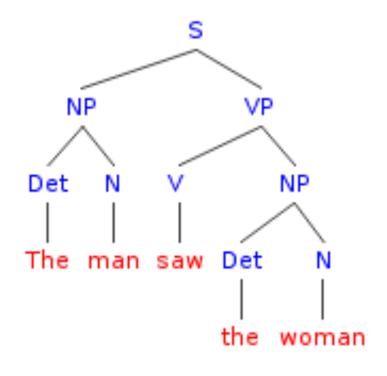
 $PP \rightarrow P NP (1.0)$

 $VP \rightarrow V NP (0.7)$

 $VP \rightarrow VP PP (0.3)$



Probabilistic context free grammar (PCFG)



Probability of a string

```
p("the man saw the woman" | S)
= p("...", NP, VP | S) [marginal probability sum]
= p("..." | NP, VP, S)*p(NP, VP | S) [Chain Rule]
= p("..." | NP, VP, S)*(1.0) [grammar rule]
= p("..." | NP, VP)*(1.0) [independence assumption]
Then split [using independence assumption]:
= p("the man" | NP)*p("saw the woman" | VP)*(1.0)
```


Probability of a string

```
p("the man saw the woman" | S)
```

= p(the | Det)*p(man | N)*p(saw | V)*p(the |
Det)*p(woman | N)*(1.0)(0.8)(0.7)(0.8)

These p(WORD | TAG) terms are *lexical rules* and are usually part of the PCFG.

Toy PCFG

 $S \rightarrow NP VP (1.0)$

 $NP \rightarrow Det N (0.8)$

 $NP \rightarrow NP PP (0.2)$

 $PP \rightarrow P NP (1.0)$

 $VP \rightarrow V NP (0.7)$

 $VP \rightarrow VP PP (0.3)$

Det \rightarrow "the" (1.0)

 $N \rightarrow$ "man" (0.5)

 $N \rightarrow$ "woman" (0.5)

 $V \rightarrow$ "saw" (1.0)

 $P \rightarrow$ "with" (1.0)

Toy PCFG

Probability of a string

```
p("the man saw the woman" | S)
= p(the | Det)*p(man | N)*p(saw | V)
*p(the | Det)*p(woman | N)*(1.0)(0.8)(0.7)(0.8)
```

probability of a string (PCFG) =
product of used rules (grammatical and lexical)

Probability of a string

```
p("the man saw the woman" | S)
= (1.0)(0.5)(1.0)(1.0)(0.5)(1.0)(0.8)(0.7)(0.8)
= 0.112
```

probability of a string (PCFG) =
product of used rules (grammatical and lexical)

Bayes' rule

- So, we have p("..." | S).
- What if we want p(S | "...")?
- By the Chain Rule, $p(A, B) = p(A \mid B)*p(B)$
- Also, by the Chain Rule, p(A, B) = p(B | A)*p(A)
- So, $p(A \mid B)*p(B) = p(A, B) = p(B \mid A)*p(A)$
- Or: $p(A \mid B) = p(B \mid A)*p(A) / p(B)$

Parts of Bayes' rule

```
p(A \mid B) = p(B \mid A) * p(A) / p(B)
posterior likelihood * prior / normalizer
```

The most likely event

- Event alternatives: A₁, A₂, A₃,...,A_n
- Common context event: B
- $\operatorname{argmax}_{i} p(\mathbf{A}_{i} \mid \mathbf{B}) = \operatorname{argmax}_{i} p(\mathbf{B} \mid \mathbf{A}_{i}) p(\mathbf{A}_{i}) / p(\mathbf{B})$ = $\operatorname{argmax}_{i} p(\mathbf{B} \mid \mathbf{A}_{i}) p(\mathbf{A}_{i})$

Medical test Bayes' rule problem

- Rare disease: affects 1 in 10,000 people.
- If someone has the disease,
 s/he will test positive with probability 0.97.
- If someone does not have the disease,
 s/he will test positive with probability 0.01.
- You just tested positive for the disease.
- 1. What is your most likely health status?
- 2. What is the probability that you have the disease?

Medical test Bayes' rule problem

- p(disease) = 0.0001 [prior]
- p(positive | disease) = 0.97 [likelihood]
- p(positive | ¬disease) = 0.01 [for normalizer]

- 1. p(positive | disease) * p(disease) ? p(positive | ¬disease) * p(¬disease)
- 2. p(disease | positive) = p(positive | disease) * p(disease) / p(positive)

Exercises

- 1. Memorize the green statements:
 - conditional = joint / normalizer
 - 2. chain rule: joint = conditional of last * joint of rest
 - 3. probability of a string (PCFG) = product of used rules
 - 4. Bayes' rule: $p(A \mid B) = p(B \mid A) * p(A) / p(B)$
 - 5. Bayes' rule: posterior = likelihood * prior / normalizer
- 2. Solve the medical test Bayes' Rule problem (slide 20).

