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Schedule

22.10.2014
23.10.2014
27.10.2014
29.10.2014
31.10.2014

Calculate the probability of a given parse
Solve the medical test Bayes’ Rule problem
Create a code for simplified Polynesian
Identify types of machine learning problems
Find a regression line for 2D data

Slide 2 of 22



Al

From last time

probability = what you want / what is possible
“and” = * (times) [if independent]
“or” =+ (plus) [if mutually exclusive]

logarithms = exponents
surprisal = the negative logarithm of probability
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Conditional probability example
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Definition of conditional probability

* p(A | B)=p(A, B) / p(B)
* conditional = joint / normalizer

 “How likely is A, given that B happens?”

 “Germany wins the game” is a predicate that
describes event A (a set of outcomes).
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Conditional probability and independence

* p(A | B)=p(A, B) / p(B)
* Independent: p(A, B) = p(A)*p(B)
* Then, p(A | B) = p(A)*p(B) / p(B)

* p(A | B)=p(A)




Conditional independence

* p(A,B| C)=p(A | C)*p(B | C)

* Conditional independence does NOT imply
Independence.

* Independence does NOT imply conditional
Independence.
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The chain rule

* p(As, A, A)) =plA; | A, A)*p(A, | A))*p(A,)
* p(A, ... A))=p(A, | A, 4 -, A)*P(A, 4, - Ag)
e chain rule = the conditional of the last times

the joint of the rest

P (ﬁ :1;;) — ﬁp (:1;;
k=1 k=1

k—1
M Aj)
j=1
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Probabilistic context free grammar (PCFG)

S - NP VP (1.0) s

NP = Det N (0.8) =

NP = NP PP (0.2) De{\N v/\Np

PP - P NP (1.0) ]\
VP % V NP (07) The man saw DIet II\I
VP = VP PP (0.3) the woman
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Probabilistic context free grammar (PCFG)

p(NP, VP | S)=1.0 /s\
p(Det, N | NP)=0.8 = >
o(NP, PP | NP) =0.2 "\

Det N V NP
p(P, NP | PP) =1.0 ]\
p(V, NP VP) _ 07 The man saw DIet II\I
p(VP; PP | VP) =0.3 the woman
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Probability of a string

p(“the man saw the woman” | S)

=p(“..”, NP, VP | S) [marginal probability sum]
=p(“...” | NP, VP, S)*p(NP, VP | S) [Chain Rule]
=p(“...” | NP, VP, S)*(1.0) [grammar rule]

=p(“...” | NP, VP)*(1.0) [independence assumption]

Then split [using independence assumption]:
= p(“the man” | NP)*p(“saw the woman” | VP)*(1.0)
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Probability of a string

p(“the man saw the woman” | S)

= p(the | Det)*p(man | N)*p(saw | V)*p(the |
Det)*p(woman | N)*(1.0)(0.8)(0.7)(0.8)

These p(WORD | TAG) terms are lexical rules
and are usually part of the PCFG.
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Toy PCFG

S = NP VP (1.0)
NP > Det N (0.8)
NP = NP PP (0.2)
PP = P NP (1.0)
VP > V NP (0.7)
VP > VP PP (0.3)

Det - “the” (1.0)

N = “man” (0.5)

N - “woman” (0.5)
V = “saw” (1.0)

P - “with” (1.0)
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Toy PCFG

p(NP, VP | S)=1.0 o(the | Det) = 1.0
p(Det, N | NP)=0.8 o(man | N) =0.5
p(NP, PP | NP) =0.2 o(woman | N) =0.5
p(P, NP | PP)=1.0 o(saw | V) =1.0
o(V, NP | VP) = 0.7 s(with | P) = 1.0
o(VP, PP | VP) = 0.3
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Probability of a string

p(“the man saw the woman” | S)
= p(the | Det)*p(man | N)*p(saw | V)
*p(the | Det)*p(woman | N)*(1.0)(0.8)(0.7)(0.8)

probability of a string (PCFG) =
product of used rules (grammatical and lexical)

m UNIVERSITAT Slide 15 of 22
AAAAAAAAAA



Probability of a string

p(“the man saw the woman” | S)
=(1.0)(0.5)(1.0)(1.0)(0.5)(1.0)(0.8)(0.7)(0.8)
=0.112

probability of a string (PCFG) =
product of used rules (grammatical and lexical)
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Bayes’ rule

e So, we have p(“...” | S).

 What if we want p(S | “...”)?

* By the Chain Rule, p(A, B) = p(A | B)*p(B)

* Also, by the Chain Rule, p(A, B) = p(B | A)*p(A)
* So, p(A | B)*p(B) =p(A, B) =p(B | A)*p(A)

* Or: p(A| B)=p(B | A)*p(A)/ p(B)
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Parts of Bayes’ rule

p(A|B) = p(B|A) * p(A) / p(B)
posterior likelihood * prior / normalizer
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The most likely event

* Event alternatives: A, A,, A;,...,A,

* Common context event: B
* argmax; p(A; | B) =argmax. p(B | A)*p(A:)/p(B)

= argmax; p(B | A;)*p(A))
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Medical test Bayes’ rule problem

* Rare disease: affects 1in 10,000 people.
* |f someone has the disease,

s/he will test positive with probability 0.97.
* |f someone does not have the disease,

s/he will test positive with probability 0.01.
* You just tested positive for the disease.

1. What is your most likely health status?
2. What is the probability that you have the disease?
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Medical test Bayes’

p(disease) = 0.0001 [prior]
p(positive | disease) = 0.97

p(positive | ~disease) = 0.01

rule problem

likelihood]

for normalizer]

p(positive | disease) * p(disease) ? p(positive | ~disease) * p(-disease)

p(disease | positive) = p(positive | disease) * p(disease) / p(positive)
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Exercises

1. Memorize the green statements:

conditional = joint / normalizer

chain rule: joint = conditional of last * joint of rest
probability of a string (PCFG) = product of used rules
Bayes’ rule: p(A | B)=p(B | A) * p(A) / p(B)

Bayes’ rule: posterior = likelihood * prior / normalizer

Al S

2. Solve the medical test Bayes’ Rule problem
(slide 20).
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