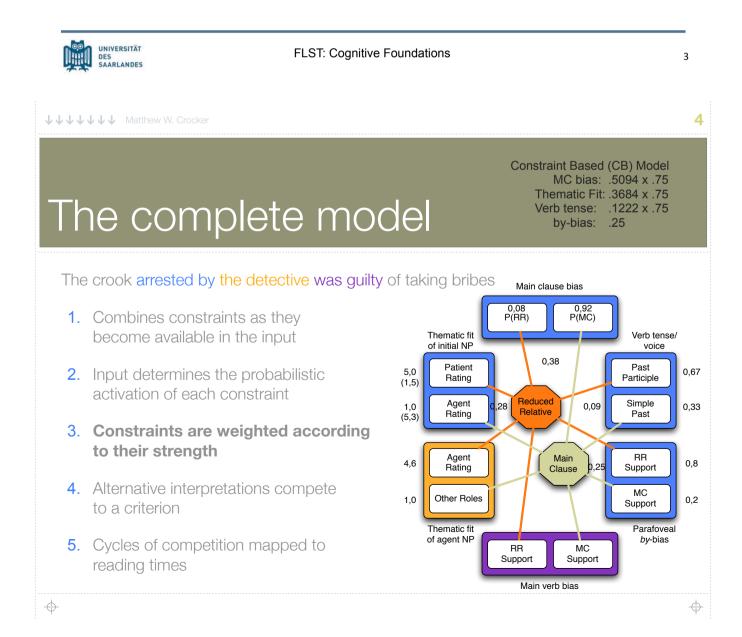
Cognitive Foundations Tutorial 1 Look at the syntactic alternatives locally and globally ambiguous sentences Identify at which word ambiguity arises / at which word disambiguation occurs? How do you think people resolve the local ambiguity (what's your preference)? At the point of ambiguity, which structure does Frazier's theory predict will be constructed? Tell what additional kinds of information would influence processing in an interactive model like McRae's. How to design an experiment to test whether Frazier or McRae is right?

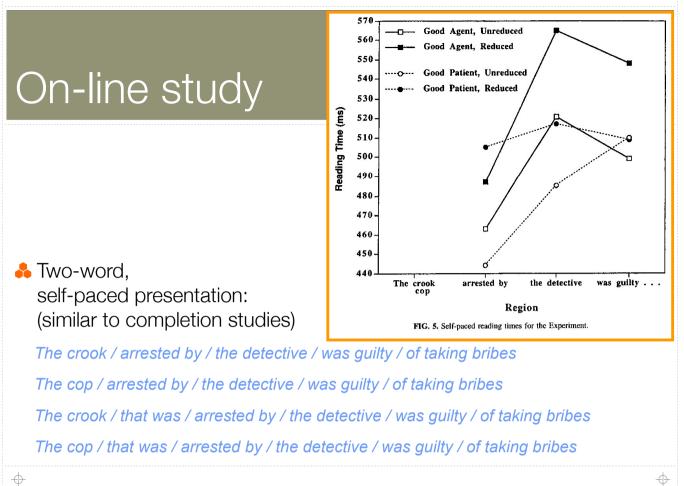
FLST: Organization

UNIVERSITÄT

DES SAARLANDES 1

"The crook/cop arrested by the detective was guilty of taking bribes"


<u>Verb tense/voice constraint:</u> verb bias towards past or past participle Relative log frequency is estimated from corpora: RR=.67 MC=.33


<u>Main clause bias:</u> general bias for structure for "NP verb+ed ..." Corpus: P(RR|NP + verb-ed) = .08, P(MC|NP + verb-ed) = .92

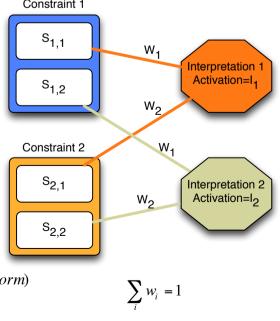
<u>by-Constraint:</u> extent to which 'by' supports the passive construction Estimated for the 40 verbs from WSJ/Brown: RR= .8 MC= .2

<u>Thematic fit:</u> the plausibility of crook/cop as an agent or patient Estimated using a rating study

by-Agent thematic fit: good Agent is further support for the RR vs. MC Same method as (4).

The recurrence mechanism

- \Box *w_c* is the weight of the *cth* constraint
- □ *I*^{*a*} is the activation of the *a*^{*th*} interpretation
- 3-step normalized recurrence mechanism:


□ Normalize:

□ Integrate:

$$S_{c,a}(norm) = \frac{S_{c,a}}{\sum_{a} S_{c,a}}$$
$$I_a = \sum_{c} \left[w_c \cdot S_{c,a}(norm) \right]$$

Geedback:

 $S_{c,a} = S_{c,a}(norm) + I_a \cdot w_c \cdot S_{c,a}(norm)$

5

Example of Recurrence

	Constraint 1			Constraint 2			Activation		Constraint 1		Constraint 2	
	MC	RR	Weight	MC	RR	Weight	I_MC	I_RR	MC	RR	MC	RR
0	0,6	0,4	0,35	0,4	0,6	0,65	0,47	0,53	0,6987	0,4742	0,5222	0,8067
1	0,596	0,404	0,350	0,393	0,607	0,650	0,464	0,536	0,692	0,480	0,511	0,819
2	0,591	0,409	0,350	0,385	0,615	0,650	0,457	0,543	0,685	0,487	0,499	0,833
3	0,584	0,416	0,350	0,375	0,625	0,650	0,448	0,552	0,676	0,496	0,484	0,850
4	0,577	0,423	0,350	0,363	0,637	0,650	0,438	0,562	0,665	0,507	0,466	0,870
5	0,568	0,432	0,350	0,349	0,651	0,650	0,425	0,575	0,652	0,519	0,445	0,895
6	0,557	0,443	0,350	0,332	0,668	0,650	0,411	0,589	0,637	0,535	0,421	0,924
7	0,543	0,457	0,350	0,313	0,687	0,650	0,394	0,606	0,618	0,553	0,393	0,958
8	0,528	0,472	0,350	0,291	0,709	0,650	0,374	0,626	0,597	0,576	0,362	0,998
9	0,509	0,491	0,350	0,266	0,734	0,650	0,351	0,649	0,571	0,603	0,327	1,044
10	0,487	0,513	0,350	0,238	0,762	0,650	0,325	0,675	0,542	0,634	0,289	1,095
11	0,461	0,539	0,350	0,209	0,791	0,650	0,297	0,703	0,509	0,672	0,249	1,153
12	0,431	0,569	0,350	0,178	0,822	0,650	0,266	0,734	0,471	0,715	0,208	1,215
13	0,397	0,603	0,350	0,146	0,854	0,650	0,234	0,766	0,430	0,765	0,169	1,279
14	0,360	0,640	0,350	0,117	0,883	0,650	0,202	0,798	0,385	0,819	0,132	1,342
15	0,320	0,680	0,350	0,089	0,911	0,650	0,170	0,830	0,339	0,878	0,099	1,402
16	0,278	0,722	0,350	0,066	0,934	0,650	0,140	0,860	0,292	0,939	0,072	1,456
17	0,237	0,763	0,350	0,047	0,953	0,650	0,114	0,886	0,247	0,999	0,051	1,502
18	0,198	0,802	0,350	0,033	0,967	0,650	0,091	0,909	0,204	1,057	0,035	1,539
19	0,162	0,838	0,350	0,022	0,978	0,650	0,071	0,929	0,166	1,110	0,023	1,569
20	0,130	0,870	0,350	0,014	0,986	0,650	0,055	0,945	0,133	1,158	0,015	1,591

FLST: Cognitive Foundations

7