)P

Foundations of Language Science and Technology

Finite State Methods for Lexicon and Morphology

Bernd Kiefer

Bernd.Kiefer@dfki.de

Deutsches Forschungszentrum fur kinstliche Intelligenz

Finite State Methods for Morphology — p.1/41

FLlE Morphological Parsing

e Break a surface form into morphemes:
» foxes into fox (noun stem) and -e -s (plural suffix +
e-insertion)
e Compute stem and features
» goose — goose +N +SGor +V
» geese — goose +N +PL
» gooses — goose +V +35G

e Needed for (among others)
» spell-checking: is steadyly or steadily correct?
» |dentify a word’s part-of-speech
» reduce a word to its stem

Finite State Methods for Morphology — p.2/41

)FL Morphological Knowledge

Components needed in a morphological parser:

1. Lexicon: list of stems and class information (base,
Inflectional class etc.)

2. Morphotactics: a model of morphological processes like
English adjective inflection on the last slide
e |exical and morphotactic knowlegde will be encoded

using finite-state automata

3. Orthography: a model of how the spelling changes when
morphemes combine, e.g.,
® City+s — cities
e in — Il in context of |, like in- +legal
e will be modeled using finite-state transducers

Finite State Methods for Morphology — p.3/41

03¢/ Detour: Describing Languages

e Language: a set of finite sequences of symbols

e Symbols can be anything like gra
e Alphabet: the inventory of symbo

e \We want formal devices to descri
language

ohemes, phonemes, etc.
S

ne the strings in a

Finite State Methods for Morphology — p.4/41

1347 Formal Languages - Definitions

e Alphabet ¥ (Sigma): a nonempty finite set of symbols

e Strings of a language: arbitrary finite sequences of
symbols in ¥
» ¢ (epsilon) denotes the empty string

» ¥*Is the set of all strings over %, including e
e A language L Iis a subset of X*, L C ¥*

» grammatical sentences w € L
» ungrammatical sentences v ¢ L >

Finite State Methods for Morphology — p.5/41

1347} Formal Grammars - Definitions

e Mathematical devices to describe languages

e Goal: separate the grammatical from the ungrammatical
strings

e One of the devices: rule systems

» Two alphabets: terminals X, nonterminals N
» Rules rewrite strings in (XU N)* into new strings in (XU
N)*
e Languages differ in complexity

e Complexity depends on the type of rule system / device
needed

Finite State Methods for Morphology — p.6/41

1347 Chomsky Hierarchy

e Type 3: regular languages
Rules of type A — a, A—aB; ABe N, acX*
e Type 2: context free languages
A— ;e (ZUN)*
e Type 1: context sensitive languages
aApf—ayvB;a e X”
e Type O: unrestricted
aAS—yY
e The following inclusions hold:
Type 3 C Type 2 C Type 1 C Type O

Finite State Methods for Morphology — p.7/41

)FL Regular Languages

e Simplest formal languages, rules A — x, A — x B

e Alternative characterization:
use symbols from the alphabet and combine them using

» concatenation e

> alternative |
» Kleene star * (repeat zero or more times)

e Examples:
{the}e{gifted}e{student}
{the}e({very}|{{extremely})e{gifted}e{student}

({O}{1 {2 {3 A5G 7}{8}{9}) "« ({0} {2} {4} [{6}{8})

Finite State Methods for Morphology — p.8/41

03¢/ Properties of Regular Languages

e Rule systems are right linear

e Nonterminal always at the right end of the rule’s right hand
side: A—-X,A—=XB

e A linear (in size of the string) number of steps is enough to
answer.: w e L ?

Finite State Methods for Morphology — p.9/41

03¢/ Properties of Regular Languages

e Rule systems are right linear

e Nonterminal always at the right end of the rule’s right hand
side: A—-X,A—=XB

e A linear (in size of the string) number of steps is enough to
answer.: w e L ?

e Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

Finite State Methods for Morphology — p.9/41

03¢/ Properties of Regular Languages

e Rule systems are right linear

e Nonterminal always at the right end of the rule’s right hand
side: A—-X,A—=XB

e A linear (in size of the string) number of steps is enough to
answer.: w e L ?

e Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

e Can describe infinite languages

Finite State Methods for Morphology — p.9/41

03¢/ Properties of Regular Languages

e Rule systems are right linear

e Nonterminal always at the right end of the rule’s right hand
side: A—-X,A—=XB

e A linear (in size of the string) number of steps is enough to
answer.: w e L ?

e Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

e Can describe infinite languages

e \What is the simplest thing not possible (Hotz’s question)
a"b",n € N only finite counting!

Finite State Methods for Morphology — p.9/41

03¢/ Properties of Regular Languages

e Rule systems are right linear

e Nonterminal always at the right end of the rule’s right hand
side: A—-X,A—=XB

e A linear (in size of the string) number of steps is enough to
answer.: w e L ?

e Can describe arbitrary long strings, e.g., sheep talk:
ba(a)*h

e Can describe infinite languages

e \What is the simplest thing not possible (Hotz’s question)
a"b",n € N only finite counting!

e Equivalent to finite automata

Finite State Methods for Morphology — p.9/41

1347} Finite Automata

e A finite set of states Q, containing a start state g, and a
subset of final states F

e An Input tape containing the input string and a pointer to
mark the current input position

e A transition relation §: Q x (X U{e}) x Q

e Possible moves depend on:
» the current state
» the current input symbol

e every move advances the input pointer

e graphical representation: directed graph, states are nodes,
edges are state transitions

Finite State Methods for Morphology — p.10/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

Finite State Methods for Morphology — p.11/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

the
> (@

Finite State Methods for Morphology — p.11/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

extremely

Finite State Methods for Morphology — p.11/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

the
>(w)— * (35
extremely @ gifted

Finite State Methods for Morphology — p.11/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

th

e
>(0)y——(1)—— (%)

extremely @ gifted

Finite State Methods for Morphology — p.11/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

Finite State Methods for Morphology — p.11/41

134} Nondeterministic Finite Automata

e Automata where ¢ Is a relation and ¢ arcs are allowed are
called nondeterministic automata

e The move may not be uniquely determined based on the
next input symbol

e ex: the (extremely gifted|¢) gifted* student

student

Finite State Methods for Morphology — p.11/41

)FL Closure Properties

e Language type A is closed unter operation x means:

applying x to members of A results in element of the same
type

e Regular languages are closed under
» Concatenation, Union (trivial)

» Complementation: Exchange final and nonfinal states
of an automaton

» Intersection: Ly N Ly = —=(=L; U-Ly)

e Applicability of these operations facilitates modularization

e E.g., concatenate automaton for base word forms with one
for inflectional suffixes

Finite State Methods for Morphology — p.12/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

: _—
n

>0 St (g € . >

Finite State Methods for Morphology — p.13/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

> —)—=—(()

Finite State Methods for Morphology — p.14/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

Fallure!

. N
n

Finite State Methods for Morphology — p.15/41

134} Finite Automata: Search

e German adjective ending

Backtracking

e |nput: klein + er + es

er

Finite State Methods for Morphology — p.16/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

Fallure!

. N
n

Finite State Methods for Morphology — p.17/41

134} Finite Automata: Search

e German adjective ending

e |nput: klein + er + es

Finite State Methods for Morphology — p.18/41

134} Finite Automata: Search

e German adjective ending

e |nput: klein + er + es

Faillure!

Finite State Methods for Morphology — p.18/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

Finite State Methods for Morphology — p.19/41

N3¢} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

Fallure!

. N
n

Finite State Methods for Morphology — p.20/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

er

Finite State Methods for Morphology — p.21/41

134} Finite Automata: Search

e German adjective ending
e |nput: klein + er + es

Faillure!

. N
n

Finite State Methods for Morphology — p.22/41

134} Finite Automata: Search

e German adjective ending

e |nput: klein + er + es

Finite State Methods for Morphology — p.23/41

N3¢} Finite Automata: Search

e German adjective ending

e |nput: klein + er + es

Success!

Finite State Methods for Morphology — p.23/41

1347} Nondeterministic vs. Deterministic

e Search becomes a problem in big automata

e Solution: determinisation

» the transition relation has to be a total function Qx> —
Q: exactly one choice

» for every nondeterministic automaton, a deterministic
automaton can be constructed that accepts the same
language

» recognition linear in size of the string

» put: the size of the automaton can be exponential In
size of original automaton

Finite State Methods for Morphology — p.24/41

)FLlE Advantages of Finite Automata

e efficiency
» very fast if deterministic or low-degree non-determinism
» space. compressed representations of data

e system development and maintenance

» modular design and automatic compilation of system
components

» high level specifications

e language modelling
» uniform framework for modelling dictionaries and rules

Finite State Methods for Morphology — p.25/41

FLlE FSA for Morphology

e |et’s first have a look at concatenative morphology
» catS:cat +S
» unbelieveable: un + believe + able

e Use different automata for
» prefixes
» pase form = lexicon (we’ll do this first)

» suffixes
and combine them with concatenation

e recognition is not enough: analysis should return
iInformation, e.g., inflectional class

e |dea: associate final states with information

Finite State Methods for Morphology — p.26/41

3¢/ Lexicon representation

Why not simply list all words?

Finite State Methods for Morphology — p.27/41

03¢/ Lexicon representation

Why not simply list all words?

stiff POS e |large, wasteful, incomplete
stiffer comp
stiffest sup

stiffly adv

Sti pos & adv
stiller comp
stillest adv

stout pos & adv
stouter comp
stoutest sup

stony POS
stonier com

Finite State Methods for Morphology — p.27/41

03¢/

Lexicon representation

Why not simply list all words?

stiff
stiffer
stiffest
stiffly
sti
stiller
stillest
stout
stouter
stoutest
stony
stonier

POS
comp

sup

adv

pos & adv
comp

adv

pos & adv
comp

sup

POS

com

new words

e large, wasteful, incomplete
e no (morphological) handling of

Finite State Methods for Morphology — p.27/41

1347 Lexicon representation

Why not simply list all words?

stiff POS e large, wasteful, incomplete

stiffer comp e no (morphological) handling of

stiffest su

sty adv new words

Sti pos & adv ® what about languages with a
stiller comp more productive morphology, e.g.,
stillest adv Finnish or Turkish?

stout pos & adv

stouter comp
stoutest sup
stony POS
stonier com

Finite State Methods for Morphology — p.27/41

)FLlE Lexicon representation

Why not simply list all words?

stiff POS e large, wasteful, incomplete

stiffer comp e no (morphological) handling of

stiffest sup new words

stiffly adv |

Sti pos & adv ® what about languages with a
stiller comp more productive morphology, e.g.,
stillest adv Finnish or Turkish?

stout pos & adv

stouter comp > Encode each phenomenon /
stoutest sup process in one automaton

stony pos > Combine them and get an efficient
stonier com machine

Finite State Methods for Morphology — p.27/41

1347 Lexicon representation

stiff POS Separate base form and modifications
stiffer comp e.d., (Inflectional) affixes:
stiffest sup ”
stiffly ~ adv zﬂu
23 er ggrsn& "N stout Lo s

P +er com

- stony P
stillest adv <tolon +est sup
stout pos & adv . + | adv reallv?
stouter comp straight Y y
stoutest sup :
stony pos Other morphological processes like un-
stonier com negation:
un + happy

un + clear +ly

Finite State Methods for Morphology — p.28/41

134} Lexicon Automaton

., sandy, still, stolen, stony, stout, ...
1. construct a letter tree (or trie); leaves = final nodes

/o—|+o—|+©
/O—e+O—n>©

xg%tgwg e

~0. "-o-y-0
n.
Q... O\dﬁO—Y»@

Finite State Methods for Morphology — p.29/41

134} Lexicon Automaton

., sandy, still, stolen, stony, stout, ...
1. construct a letter tree (or trie); leaves = final nodes
2. associate the leaves with lexical information

: O— -0~ |-O-ly-adv
/O' / /o—e+o—n>© -ly-adv

%S*C(t*!w*cé -0~ t-O+ly-adv

~0-Y-O+ly-adv, y—i

\Q. \O\ n. .
. "O—d—0-Y-O+ly-adv, y—i

Finite State Methods for Morphology — p.29/41

134} Lexicon Automaton

., sandy, still, stolen, stony, stout, ...
1. construct a letter tree (or trie); leaves = final nodes
2. associate the leaves with lexical information

3. merge the nodes with identical information
e minimize the automaton

: _AO-1-0—|
/’O' i /&e»&\@ -ly-adv

%S*C(t*cé()*cg -0~ t-O+ly-adv

t ~0-Y-O+ly-adv, y—i

\).
O«
\Q Nso_d

Finite State Methods for Morphology — p.29/41

03¢/ Suffixes: German Adjectives

Only one final state:
How to get the
different values?

er

90 St

Finite State Methods for Morphology — p.30/41

03¢/ Suffixes: German Adjectives

final states with
different information
can not be
combined: expand
automaton

N-©...
m—Q...
Loy el

er

% St

o —0O--- S—QO comp+nlr+sg-+(nomjacc)
; N0
>c</ ~—0- - "0

S\ o — m*‘@
O\t—"©/ S r/’©

~—O sup+ntr+sg+(nomjacc)

Finite State Methods for Morphology — p.30/41

1347 Combining the Levels

e \What about: un... with big; ...ly with still?

Finite State Methods for Morphology — p.31/41

1347 Combining the Levels

T —————————— ——

e \What about: un... with big; ...ly with still?
e Split startnodes in adj-lex, like the final nodes
e But: splits the lexicon, less compact

e Alternative: special flags that are handled by the
machinery

Finite State Methods for Morphology — p.31/41

FLlE Two-Level Morphology

e Represents a word as correspondence between two levels
» Lexical level. abstract morphemes and features
» Surface level: the actual spelling of the word

e Can be implemented using finite state transducers

e A finite state transducer rewrites the input onto a second,
additional tape

Lexical C | a t |+N |+PL

Surface c | a t S

Finite State Methods for Morphology — p.32/41

1347} Automaton vs. Transducer

e Finite-state Automaton
» Arcs are labeled with symbols like a and b
» Accepts strings like aaab
» Defines a regular language: { a, ab, aab, aaab, ... }

e Finite-state Transducer

» Arcs are labeled with symbol pairs like a:b and b:b, but
also b:e and ¢:a (and b as shorthand for b:b)

» Accepts a pair of strings like aaab:aabb
» Defines a regular relation: { a:b, aa:bb, aaa:bbb, ...}

e \We will use it to accept string pairs like cat+N+PL:cats and
fox+N+PL:foxes

Finite State Methods for Morphology — p.33/41

)FL

Four Views on Transducers

| exical C

a

t

+N [+PL

Surface C

a

S

1. Recognizer: machine that accepts or rejects pairs of

strings

2. Generator. machine that outputs pairs of strings

3. Translator: machine that reads one string and outputs
another string (in both directions)

4. Set Relator: machine that computes relations between

sets

Finite State Methods for Morphology — p.34/41

1347} Cascaded Transducers

e To accomodate for all spelling / pronounciation changes,
one transducer alone is not powerful enough

e Use intermediate tapes that contain the output of one
transducer and serves as input to another transducer

e To handle irregular spelling changes, we can add
Intermediate tapes with intermediate symbols:

" for morpheme boundary, # for word boundary
Lexical f 1 o X |+N [+PL
Surface flo | x|~ | s | #

Finite State Methods for Morphology — p.35/41

)FL

Some English Orthograpic Rules

e English orthographic rules that apply at particular
morpheme boundaries

Name Description of rule Example
consonant consonant doubled before | beg / begging
doubling -ing/-ed
e-deletion silent e dropped before make / making
-ing/-ed
e-insertion e added between -s, -z, -x, | watch /
-ch, -sh and -s watches
y-replacement | -y changes to -ie before -s, | try / tries
to -1 before -ed
K-Insertion verbs ending with vowel panic /
+ -c add -k panicked

Finite State Methods for Morphology — p.36/41

)FLlE Orthograpic Rules I

e Spelling rules take the concatenation of morphemes — the
Intermediate tape — as input and produce the surface form

e Example: e-insertion rule is applied to the intermediate

form fox s#

Lexical f O | X [+N |+PL
Intermediate f 0O | X " S |#

Surface f O | X | e | s

Finite State Methods for Morphology — p.37/41

1343 e-Insertion

. * ((X|z|s) ~: € ee
| —(X|z|s) ~: €) St

o rule: ((z|s|x) “:c e:e | =(z|s|x) “i¢) s #

® % all pairs not in this transducer, remember y is y.y
e States ¢y and ¢; accept default pairs like cat”s#.cats#
e State ¢; rejects incorrect pairs like fox s#.foxs#

Finite State Methods for Morphology — p.38/41

03¢/

Y

72)

Ve ¥

Vi
*

NG

>
o

Y

(43)

N

S:S)@ #.#)

e EX.: spy+s — spies

o rule: *((y:ii"e)|(—y) #
e All these machines do not change input to which they do
not apply

e Nevertheless, the rule writer must take care of all
Interactions

y-Replacement

Finite State Methods for Morphology — p.39/41

)FL Summary

e The task of morphological analysis/generation

e (Very short) introduction to formal languages

e Basics of regular languages

e Nondeterministic and deterministic finite automata

e Applying finite state techniques to morphological
knowledge

» Lexicon: compacted tries

» Concatenative phenomena: finite automata

» Associating information with final states

» Derivational phenomena: finite state transducers

Finite State Methods for Morphology — p.40/41

134} References

Beesley, Kenneth R. and Lauri Karttunen (2003). Finite-State Morphology. CSLI
Publications. www.fsmbook.com

Jurafsky, Daniel and James H. Martin (2000). Speech and Language Processing.
An Introduction to Natural Language Processing, Computational Linguistics and
Speech Recognition. New Jersey: Prentice Hall.

Koskenniemi, Kimmo (1983). Two-level morphology: a general computational
model for word-form recognition and production. Publication No:11, University of
Helsinki, Department of General Linguistics, 1983.

Mohri, Mehryar (1996). On some Applications of finite-state automata theory to
natural language processing. In: Journal of Natural Language Egineering, 2, pp
1-20.

Xerox Finite State Compiler (Web Demo):
http://www.Xxrce.xerox.com/competencies/content-anal ysis/
fsCompiler/fsinput.html

Finite State Methods for Morphology — p.41/41

	Morphological Parsing
	Morphological Knowledge
	Detour: Describing Languages
	Formal Languages - Definitions
	Formal Grammars - Definitions
	Chomsky Hierarchy
	Regular Languages
	Properties of Regular Languages
	Finite Automata
	Nondeterministic Finite Automata
	Closure Properties
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Finite Automata: Search
	Nondeterministic vs. Deterministic
	Advantages of Finite Automata
	FSA for Morphology
	Lexicon representation
	Lexicon representation
	Lexicon Automaton
	Suffixes: German Adjectives
	Combining the Levels
	Two-Level Morphology
	Automaton vs. Transducer
	Four Views on Transducers
	Cascaded Transducers
	Some English Orthograpic Rules
	Orthograpic Rules II
	e-Insertion
	y-Replacement
	Summary
	References

