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)FL Processing Regular Expressions

e \We already learned about Java’s regular expression
functionality

e Now we get to know the machinery behind
» Pattern and
» Mat cher classes

e Compiling a regular expression into a Pat t er n object
produces a Finite Automaton

e This automaton is then used to perform the matching tasks

e \We will see how to construct a finite automaton that
recognizes an input string, i.e., tries to find a full match
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134} Definition: Finite Automaton

e A finite automaton (FA) isatuple A =< Q,X,0,q, F' >
» () a finite non-empty set of states
» Y a finite alphabet of input letters
» ¢ a (total) transition function Q x ¥ — @
> qo € ( the initial state
» F C @ the set of final (accepting) states

e Transition graphs (diagrams):

initial state states transition

NN / \ flnal state

N DR OO D
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FLlE Finite Automata: Matching

e A finite automaton accepts a given input string s if there is
a sequence of states pi, pa, ..., pjs € Q such that

1. p1 = qp, the start state
2. 6(pi, s;) = pir1, Where s; Is the i-th character in s
3. p5| € F, 1.e., afinal state

e A string Is successfully matched if we have found the
appropriate sequence of states

e Imagine the string on an input tape with a pointer that is
advanced when using a ¢ transition

e The set of strings accepted by an automaton is the
accepted language, analogous to regular expressions
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)FLlE (Non)deterministic Automata

e INn the definition of automata, 4 was a total function =

given an input string, the path through the automaton is
uniquely determined

e those automata are therefore called deterministic
e for nondeterministic FA, § is a transition relation
®):QxXU{e — P(Q), where P(Q) Is the powerset of ()

e allows transitions from one state into several states with
the same input symbol

e need not be total

e can have transitions labeled ¢ (not in X), which represents
the empty string
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1347 RegExps — Automata

Construct nondeterminstic automata from regular expressions
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1347} NFA vs. DFA

e Traversing a DFA is easy given the input string: the path is
uniquely determined

e In contrast, traversing an NFA requires keeping track of a
set of (current) states, starting with the set {¢,}

e Processing the next input symbol means taking all
possible outgoing transitions from this set and collecting
the new set

e From every NFA, an equivalent DFA (one which does
accept the same language), can be computed

e Basic Idea: track the subsets that can be reached for every
possible input
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1347 Traversing an NFA
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3¢/ Traversing an NFA
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DF{H NFA — DFA: Subset Construction

e Simulate “in parallel” all possible moves the automaton
can make

e The states of the resulting DFA will represent sets of states
of the NFA, i.e., elements of P(Q)

e \We use two operations on states/state-sets of the NFA

Set of states reachable from any state s in 7" on

e-closure(T) -
on e-transitions

Set of states to which there is a transition from

move(1, a . .
(Ta) one state in 7" on input symbol a

e The final states of the DFA are those where the
corresponding NFA subset contains a final state

Finite Automata | — p.9/13



DF{H Algorithm: Subset Construction

proc SubsetConstruction(sg) =
DFAStates = e-closure({sg})
while there is an unmarked state /' in DFAStates do
mark I’
for each input symbol a do
U := e-closure(move(T, a))
DFADelta|T, a] := U
if U ¢ DFAStates then add U as unmarked state to DFAStates

proc e-closure(7T') =
e-closure :=1"; to_check :="1T
while to_check not empty do
get some state ¢ from to_check
for each state u with edge labeled € from ¢ to «
if u € e-closure then add u to e-closure and to_check
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DFM Example: Subset Construction
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03¢/ Time/Space Considerations

e DFA traversal is linear to the length of input string «

e NFA needs O(n) space (states+transitions), where n Is the
length of the regular expression

e NFA traversal may need time n x |z|, SO why use NFAS?
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)FL Time/Space Considerations

e DFA traversal is linear to the length of input string «

e NFA needs O(n) space (states+transitions), where n Is the
length of the regular expression

e NFA traversal may need time n x |z|, SO why use NFAS?

e There are DFA that have at least 2" states!

e Solution 1: “Lazy” construction of the DFA: construct DFA
states on the fly up to a certain amount and cache them

e Solution 2: Try to minimize the DFA:
There is a unigue (modulo state names) minimal
automaton for a regular language!
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1347 Minimization Algorithm by Hopcroft

proc Minimize() =
Bi1=F; By =QF

E ={B, By}
k=3
fora € > do

a(i) ={s€Qlse€ B;NTt:i(t,a) = s}
L = the smaller of the a(7)
while L # () do

take some ¢ € L and delete it

for 7 < k s.th. EltEBj
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