

Java II Finite Automata I

Bernd Kiefer

Bernd.Kiefer@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

Processing Regular Expressions

- We already learned about Java's regular expression functionality
- Now we get to know the machinery behind
 - Pattern and
 - Matcher classes
- Compiling a regular expression into a Pattern object produces a Finite Automaton
- This automaton is then used to perform the matching tasks
- We will see how to construct a finite automaton that recognizes an input string, i.e., tries to find a full match

Definition: Finite Automaton

- A finite automaton (FA) is a tuple $A = \langle Q, \Sigma, \delta, q_0, F \rangle$
 - Q a finite non-empty set of states
 - \triangleright Σ a finite alphabet of input letters
 - \blacktriangleright δ a (total) transition function $Q \times \Sigma \longrightarrow Q$
 - $ightharpoonup q_0 \in Q$ the initial state
 - $ightharpoonup F \subseteq Q$ the set of final (accepting) states
- Transition graphs (diagrams):

Finite Automata: Matching

- A finite automaton *accepts* a given input string s if there is a sequence of states $p_1, p_2, \ldots, p_{|s|} \in Q$ such that
 - 1. $p_1 = q_0$, the start state
 - 2. $\delta(p_i, s_i) = p_{i+1}$, where s_i is the *i*-th character in s_i
 - 3. $p_{|s|} \in F$, i.e., a final state
- A string is successfully matched if we have found the appropriate sequence of states
- Imagine the string on an input tape with a pointer that is advanced when using a δ transition
- The set of strings accepted by an automaton is the accepted language, analogous to regular expressions

(Non)deterministic Automata

- in the definition of automata, δ was a total function ⇒
 given an input string, the path through the automaton is
 uniquely determined
- those automata are therefore called deterministic
- for nondeterministic FA, δ is a transition relation
- $\delta: Q \times \Sigma \cup \{\epsilon\} \longrightarrow \mathcal{P}(Q)$, where $\mathcal{P}(Q)$ is the powerset of Q
- allows transitions from one state into several states with the same input symbol
- need not be total
- can have transitions labeled ϵ (not in Σ), which represents the empty string

Construct nondeterminstic automata from regular expressions

- Traversing a DFA is easy given the input string: the path is uniquely determined
- In contrast, traversing an NFA requires keeping track of a set of (current) states, starting with the set $\{q_o\}$
- Processing the next input symbol means taking all possible outgoing transitions from this set and collecting the new set
- From every NFA, an equivalent DFA (one which does accept the same language), can be computed
- Basic Idea: track the subsets that can be reached for every possible input

NFA — **DFA:** Subset Construction

- Simulate "in parallel" all possible moves the automaton can make
- The states of the resulting DFA will represent sets of states of the NFA, i.e., elements of $\mathcal{P}(Q)$
- We use two operations on states/state-sets of the NFA

ϵ -closure (T)	Set of states reachable from any state s in T on on ϵ -transitions
move(T, a)	Set of states to which there is a transition from one state in ${\cal T}$ on input symbol a

 The final states of the DFA are those where the corresponding NFA subset contains a final state

Algorithm: Subset Construction

```
proc SubsetConstruction(s_0) \equiv
  DFAStates = \epsilon-closure(\{s_0\})
  while there is an unmarked state T in DFAStates do
         mark T
         for each input symbol a do
             U := \epsilon-closure(move(T, a))
             DFADelta[T, a] := U
             if U \not\in \mathit{DFAStates} then add U as unmarked state to \mathit{DFAStates}
proc \epsilon-closure(T) \equiv
  \epsilon-closure := T; to_check := T
```

while to_check not empty \underline{do} get some state t from to_check $\underline{for} \text{ each state } u \text{ with edge labeled } \epsilon \text{ from } t \text{ to } u$ $\underline{\underline{if}} \ u \not\in \epsilon\text{-closure } \underline{\underline{then}} \text{ add } u \text{ to } \epsilon\text{-closure and } to_check$

- DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times |x|$, so why use NFAs?

- ullet DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times |x|$, so why use NFAs?
- There are DFA that have at least 2ⁿ states!

- ullet DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times |x|$, so why use NFAs?
- There are DFA that have at least 2ⁿ states!
- Solution 1: "Lazy" construction of the DFA: construct DFA states on the fly up to a certain amount and cache them

- DFA traversal is linear to the length of input string x
- NFA needs $\mathcal{O}(n)$ space (states+transitions), where n is the length of the regular expression
- NFA traversal may need time $n \times |x|$, so why use NFAs?
- There are DFA that have at least 2ⁿ states!
- Solution 1: "Lazy" construction of the DFA: construct DFA states on the fly up to a certain amount and cache them
- Solution 2: Try to minimize the DFA:
 There is a unique (modulo state names) minimal automaton for a regular language!

Minimization Algorithm by Hopcroft

```
\begin{array}{l} \mathbf{proc} \; \mathit{Minimize}() \; \equiv \\ B_1 = F; \; B_2 = Q \; F \\ E = \{B_1, B_2\} \\ k = 3 \\ \mathbf{for} \; a \in \Sigma \; \mathbf{\underline{do}} \\ a(i) = \{s \in Q | s \in B_i \land \exists t : \delta(t, a) = s\} \\ L = \; \mathrm{the \; smaller \; of \; the } \; a(i) \\ \mathbf{\underline{while}} \; L \neq \emptyset \; \mathbf{\underline{do}} \\ \mathrm{take \; some} \; i \in L \; \mathrm{and \; delete \; it} \\ \mathbf{\underline{for}} \; j < k \; \mathrm{s.th.} \; \exists t \in B_j \end{array}
```