Natural Language Parsing

Foundations of Language Science and Technology (WS 2008/2009)

Y1 Zhang

Language Technology Lab, DFKI GmbH
Cluster of Excellence - Multimodal Computing and Interaction
Department of Computational Linguistics, Saarland University

Language & Grammar

 Language
— Structural

- Productive

- Ambiguous, yet efficient in human-human
communication

e Grammar

- Generalization of regularities in language structures

- Morphology & syntax, often complemented by
phonetics, phonology, semantics, and pragmatics.

Grammar Frameworks

e Formalism

- Mathematical rigor
- Facilitates the development of linguistic theory

» Formal linguistic theory

- Formalized description of language phenomena
using the formalism

* A grammar framework does NOT correspond to
parsing/generation algorithms. But a well-designed
framework should bear processing steps in mind

Ambiguity

« Human languages are ambiguous on almost
every layer

 Grammar frameworks are designed to
represent necessary ambiguities, and eliminate
unnecessary ones

* Parsing models are responsible of efficiently
apply grammar descriptions and retrieve
analyses

Syntactic Parser as NLP Component

PoS Tagging

Morphological NE Recognition
A”aWSL_’ Chunking

Syntactic Parsing <

l

Semantic Analysis

'

Dialog Processing

Trees (or not)

OBJ
/\ SBJVGOAL MOD

NP Det Sue gave Paul an old penny

» _DET

A N

Sue gave Paul an old penny

Sue gave Paul an old penny
NP ((S\NP)/NP)/NP NP NP/N N/N N

>

(S\NP)/INP N z

NP

>
S\NP

<

S

Chomsky Hierarchy

* Type O (unrestricted rewriting system)
x—f

* Type 1 (context sensitive grammars)
PAw—PPw,AEV,,pF€

* Type 2 (context free grammars)
A—B,B#¢€

* Type 3 (regular grammars)
A—xBVA—-Xx,x#¢€

Context-Free Grammar

* Vi,V 0,S)
-V.:: Terminals
-v,: Non-Terminals

- ¢ : Productions
e« A>B, A€V, ,BE(V UV)*
- S : Start symbol S€Vy

Context-Free Phrase Structure Grammar

« S->NP VP N ->dog | cat

* NP -> Det N Det->the | a

« NP -> Adj NP * VV -> chases | sleeps
e VP ->V * Adj -> gray | lazy

« VP ->V NP * Adv -> fiercely

VP -> Adv VP

CFG Derivation

o If p=BAy,w=Bxy and A—-xEP
then » follows ¢ | ¢=>w

* A sequence of strings ¢, ¢, ¢
where for all i 1<ism-1 = ¢= P,
then ¢.¢.>¢. IS a derivation from ¢, to ¢,

 ‘derivable" relation: transitive, reflexive

Earley's Algorithm

® InpUt: oW it Wy2 na W n

n

e Chart: a set of items (h.i,A—a.8)
- h,i : positions in the Input o<h<i<n

- A-«.p : dotted rule A—-«Bep

* x : rhs prefix that has already been
applied to input from h to i

* B : rhs suffix yet to be found

Earley's Algorithm

Initialize

foreach S—«xegp

C<=(0,0,S—.x)

« Scan(i)

if w=aA(h,i—1,A-»«x.aB)eC

C<(h,i,S—xa.pB)

« Complete(i)

foreach (h,i,A—»«x.)eC

foreach (k,h,B—B.Ay)eC
(D<:<k,i,B—>[3A.y>

 Predict(i)

foreach ¢(h,i,A—»«.BB)eC
foreach B—y

C<=(i,i,B-.y)

Parse

Initialize

for i=(1---n)
Predict(i-1)
Scan(i)
Complete(i)

if 3(0,n,S—«.)eC
return success

else
return failed

An Example

The dog chases a cat
Det N V Det N
0 2 3
S->.NP VP
NP->.Det N
NP->Det .N
NP->Det N. VP->V
S->NP .VP VP->.V NP
S->NP VP. VP->V. |NP->.Det N
VP->V .NP
NP->Det .N
S->NP VP. VP->V NP. |[NP->Det N.

\. S->NP VP
Y. VP>V NP
Y. VP>V

&. NP ->Det N

Probabilistic Context-Free Grammar

 Each rule Is augmented by a probability

VAAISAUE D TSR) — 1

Va,A-xep

* The probability of a derivation is the product of
rule probabilities of each derivation step

P(t)=AH P(A-«)

More Probabilities

String probability p(x="x)

Sum of the probabilities of all left-most derivations producing x from X

Sentence probabllity p(s="x)

Sum of the probabilities of all left-most derivations producing x from start
symbol S

Prefix probability pP(s=;x)

Sum of the probabilities of all sentences having x as prefix

Structured language model

Parsing with PCFG

» Earley's algorithm can be adapted to carry
probabilities
- Predict (h,i,A—>«.BB)|x,y|=(i,i,B—.B)|+x*P(B—B),P(B—B)]
- Scan (h,i—-1,A-«x.aB)|x,y|=(h,i,A-aa.B)x,y]

- Complete (h,i,A—=«.)|x; y,|Ak,hB=B.Ay)|x, y,]
:><k,h,B—>3A-Y>[+Y1*X2’+Y1*Y2]

* Inside probability: 5,(p.q)
» Best-first parsing with Viterbi Algorithm

Statistical Constituent Parsers

Collins' parser [Collins 1997]
Charniak's parser [Charniak 2000]
Reranking model [Collins et al. 2005]
Self-training [McClosky 2006]

Statistical Dependency Parsing

« Graph-based approach
[Eisner 1996] [McDonald et al. 2005]

- Edge-factorized scoring model
- Efficient algorithms to find maximal spanning tree
- Allows non-projective dependency structures

e Transition-based approach
[Covington 2001] [Nivre et al. 2007]

- (Near) deterministic parsing
- Projective/pseudo-projective

Parsing with Richer Formalisms

e TAG
[Schabes et al. 1990] [Xia 2001]
e CCG
‘Hockenmaier et al. 2007] [Clark et al. 2007]
e LFG
Riezler et al. 2002] [Cahill et al. 2004]
« HPSG
'van Noord 2006] [Miyao et al. 2008] [Callmeier 2001]

Evaluation -- PARSEVAL

(a) ROOT
|
S
NP VP NP .
T - | |
NNS NNS VBD VP NN .
' | | - |
o0 Sales 1 executives » were VBG NP PP yvesterday 1o
3 examining DT NNS IN NP
[[[T

4 the 5 figures ¢ with IJ NN
! |
7 gredat g care g

(b) ROOT

NP VP
T T |
NNS NNS VBD VP]
i e
o Sales | executives » were VBG NP
[——
3 examining NP PP
//-\\ //_\—\
DT NNS IN NP
| T
3 the 5 figures ¢ with NN NN NN

; | |
7 great g care g yesterday 1o

{c) Brackets in gold standard tree (a.):
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), *NP-(9:10)
{(d) Brackets in candidate parse (b.):
S$-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4:6), PP-(6-10), NP-(7,10)
{e) Precision: 3/8 =37.5% Crossing Brackets: 0
Recall: 3/8 =37.5% Crossing Accuracy: 100%
Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 =90.9%
Labeled Recall: 3/8=37.5%

Domain Adaptability and Multilinguality

» Statistical parsing models usually performs
well in in-domain tests and suffer accuracy
drop when tested out-domain (typically 6~8%

performance drop when train on WSJ and test
on Brown)

» Typological differences between languages

require different parsing models (morphology,
word order, projectivity, etc.)

Open Questions

How much linguistics Is required for parsing?

How do we evaluate a parser?

How to make trade-offs between adequacy,
accuracy and efficiency?

