### **Cognitive Foundations**

Lecture 2: Experimental Methods (Cont'd)

Foundations of Language Science and Technology
Garance Paris

**12 November 2008** 

## Counterbalancing

- ➤ Latin square: An n × n table filled with n different symbols in such a way that each symbol occurs exactly once in each row and exactly once in each column
- Divide your subjects in n groups and your items in n sets (n = number of conditions)
- > Each subject sees one set of items in each condition
- > Also possible: Randomization

|                    | Cond. 1    | Cond. 2    |
|--------------------|------------|------------|
| Subject<br>Group 1 | Item Set 1 | Item Set 2 |
| Subject<br>Group 2 | Item Set 2 | Item Set 1 |

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ 3 & 1 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

#### Filler Items

- Subjects should not be able to guess what the experimental manipulation is
- Filler items with similar but different structure are most often used to hide the pattern of the manipulation
- > At least twice as many fillers as items is good
- Additional fillers may be necessary to demonstrate the task to the participants or for them to get used to the task

## **Analyzing the Data**

- ➤ Most often in psycholinguistics, we try to confirm our predictions by comparing the mean reaction time, error rate, probability of an object being fixated, ... in different conditions
- ➤ But looking at the overall mean behavior is insufficient to interpret experimental results
  - For example: Even if the difference between the means is the same, the samples themselves can still differ a lot and the distribution overlap more or less







#### **Inferential Statistics**

- ➤ How do we know the results we obtained from our sample hold for the population in general?
- We can make sure with inferential statistics
- ➤ To compare two means, we can use a "t-test" (similar but more powerful: Analysis of variance, "ANOVA")
- Two numbers are reported that, together, tell us if the test was significant (if the data generalize) or not:
  - t: How much variance the data contains
    - t1: Analysis by subjects (averaging over items)
    - t2: Analysis by items (averaging over subjects)
  - p: The probability that we find a difference between the two samples in condition 1 and condition 2, although there is in reality none (due to sampling from a larger population)

# **Averaging Results**

#### Raw data

| subj. | item | cond. | D.V. |
|-------|------|-------|------|
| 1     | 1    | а     | 356  |
| 1     | 1    | b     | 641  |
| 1     | 1    | С     | 272  |
| 1     | 2    | а     | 478  |
| 1     | 2    | b     | 821  |
| 1     | 2    | С     | 375  |
|       |      |       |      |
| 2     | 1    | а     | 303  |
| 2     | 1    | b     | 426  |
| 2     | 1    | С     | 299  |
|       |      |       |      |

#### Analysis by subjects (averaging over items)

| subject | condition | dependent variable     |
|---------|-----------|------------------------|
| 1       | а         | 356+478+ / nb-of-items |
| 1       | b         | 641+821+ / nb-of-items |
| 1       | С         | 272+375+ / nb-of-items |
| 2       | а         | 303+ / nb-of-items     |
|         |           |                        |

#### Analysis by items (averaging over subjects)

| item | condition | dependent variable        |
|------|-----------|---------------------------|
| 1    | а         | 356+303+ / nb-of-subjects |
| 1    | b         | 641+426+ / nb-of-subjects |
| 1    | С         | 272+299+ / nb-of-subjects |
| 2    | а         | 478+ / nb-of-subjects     |
|      |           |                           |

## **Computing a Paired T-Test**

- Step 1: State the null hypothesis and the alternative
  - → H<sub>0</sub>: There is no difference between conditions
  - → H₁: There is a difference
- Step 2: Compute the difference for each pair, then the mean difference
- Step 4: Compute the variance, then the standard deviation, then the standard error
  - Variance: Sum of squared differences between the mean difference and the difference for each pair
  - Std. dev.: Take square root of the variance divided by n-1
  - Std. err.: Divide that number by the square root of n
- Step 5: Compute the t-value and look up the critical value in a table. If the critical value is less than the t-value you calculated, accept H₁, else reject it.