An Introduction to Semi-Supervised Learning

Foundations of Language Science and Technology

By Michael Wiegand

December 8th, 2008

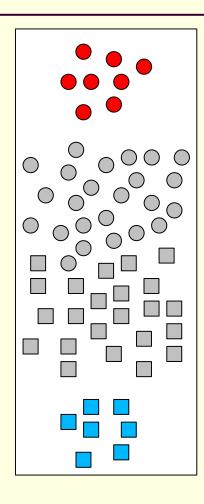
Outline of Talk

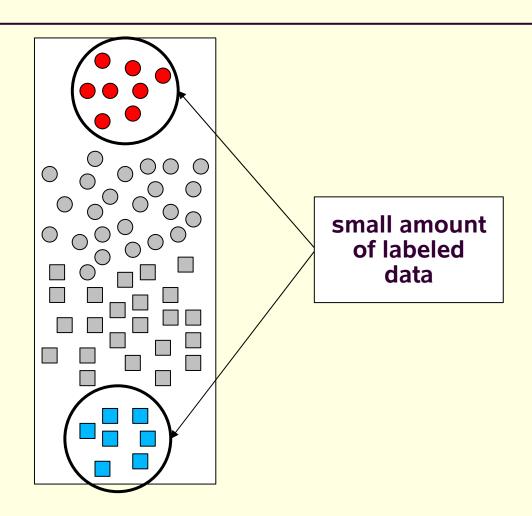
- The Concept of Semi-Supervised Learning
- Bootstrapping
- The Yarowksy Algorithm
- The Expectation Maximization Algorithm
- The Importance of Feature Selection in Semi-Supervised Learning (on Text Classification)

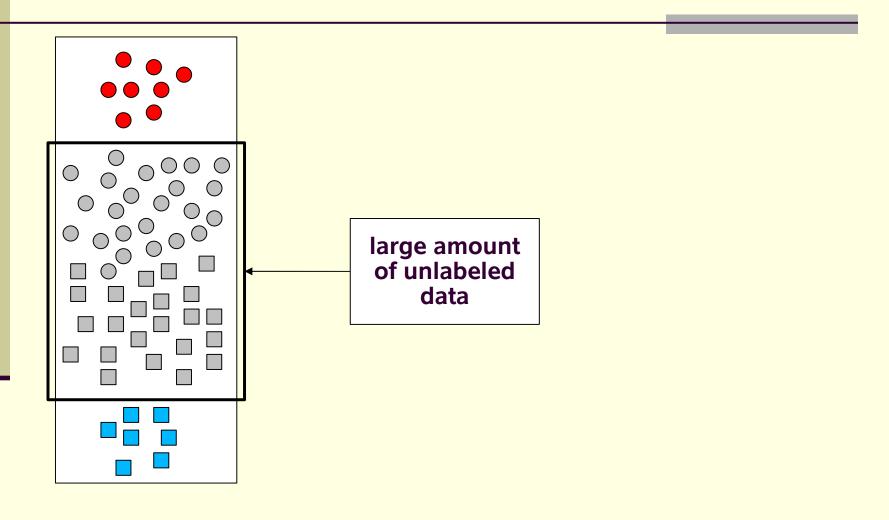
Aknowledgements

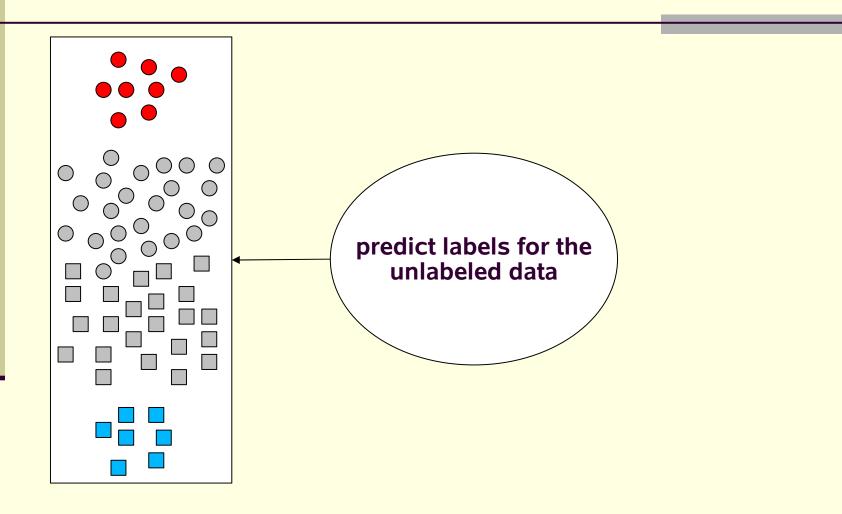
- Dietrich Klakow's lecture slides from "Statistical Natural Language Processing" (Spring 2008, Saarland University)
- Bing Liu's lecture slides from "Data Mining and Text Mining" (Spring 2008, University of Illinois at Chicago)
- William Cohen's and Tom Mitchell's lecture slides from "Information Extraction" (Spring 2007, Carnegie Mellon University)

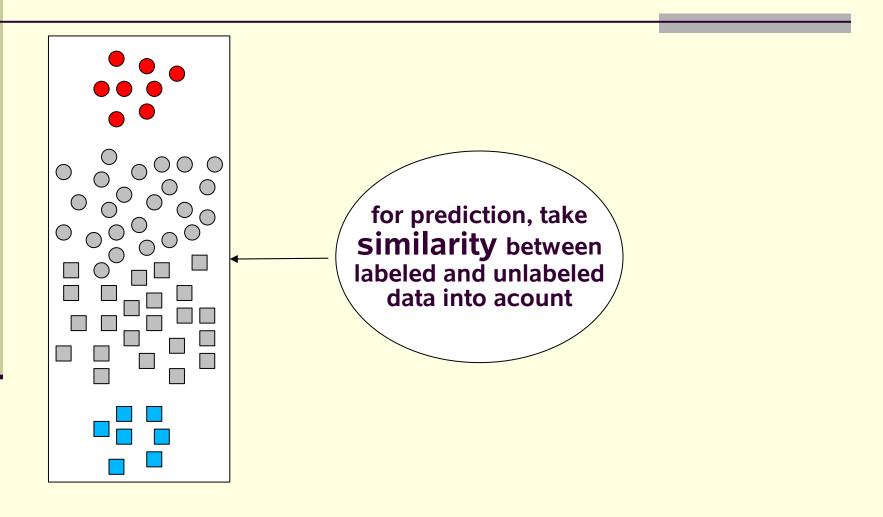
The Concept of Semi-Supervised Learning

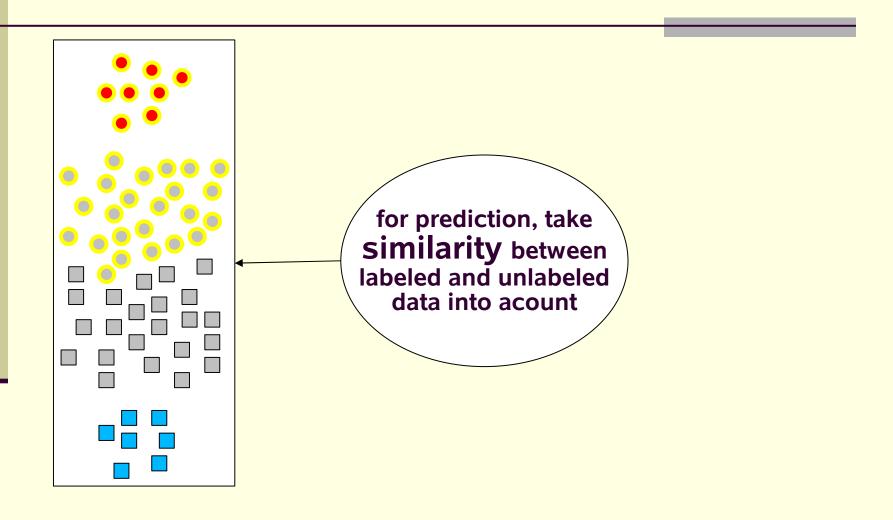


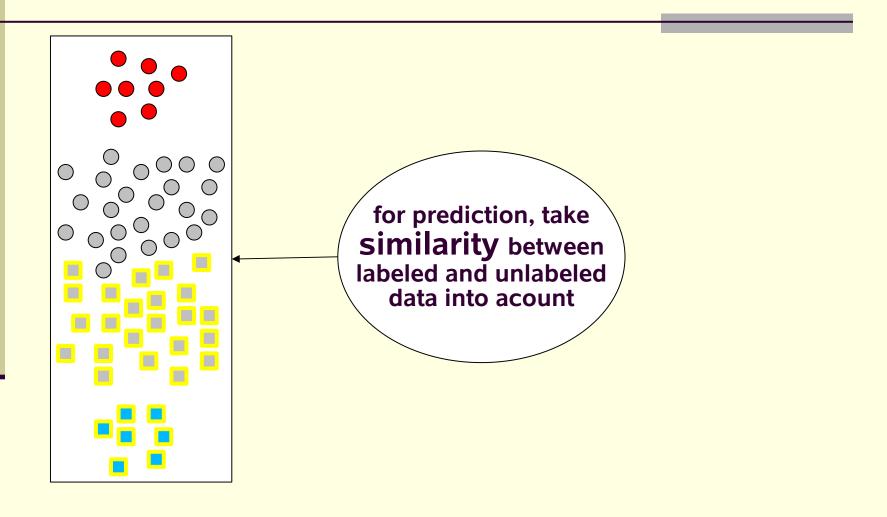


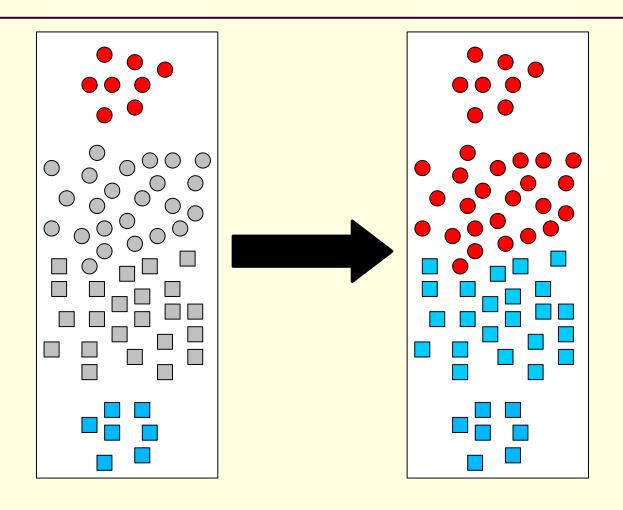


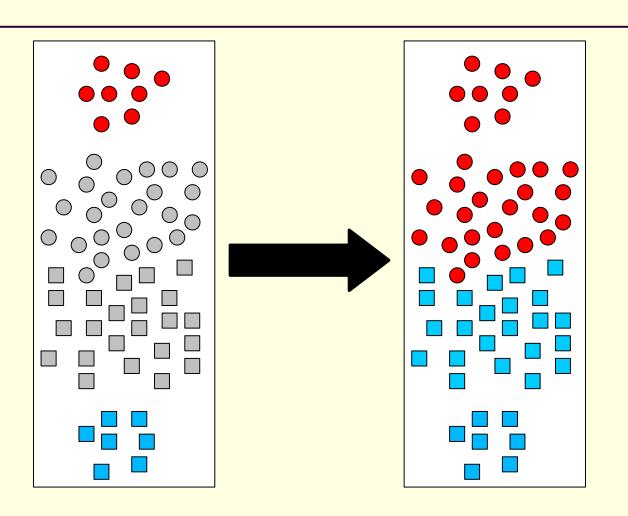




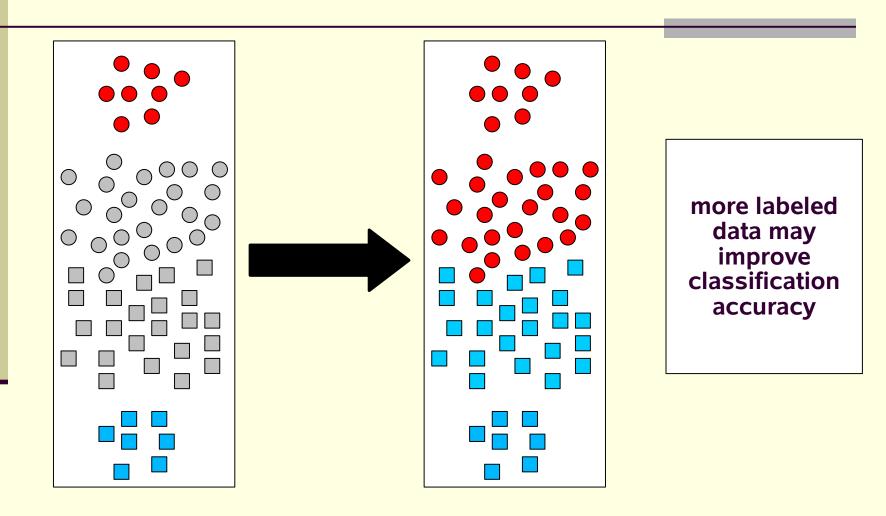








construct a classifier which also uses the predicted labels for the unlabeled data



- We will use (binary) text classification to study this problem
- Unlabeled data are usually plentiful, labeled data are expensive
- Unlabeled data provide information about the joint probability distribution over words and collocations (in texts)

- Imagine the following setting:
 - You want to build a classifier which is able to detect text documents about "Machine Learning"
 - We have labeled and unlabeled documents
 - For simplification we denote
 - ",+": label for machine learning documents
 - "-": label for other documents

labeled documents

+

... classifier...

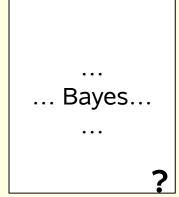

```
... classifier...
```

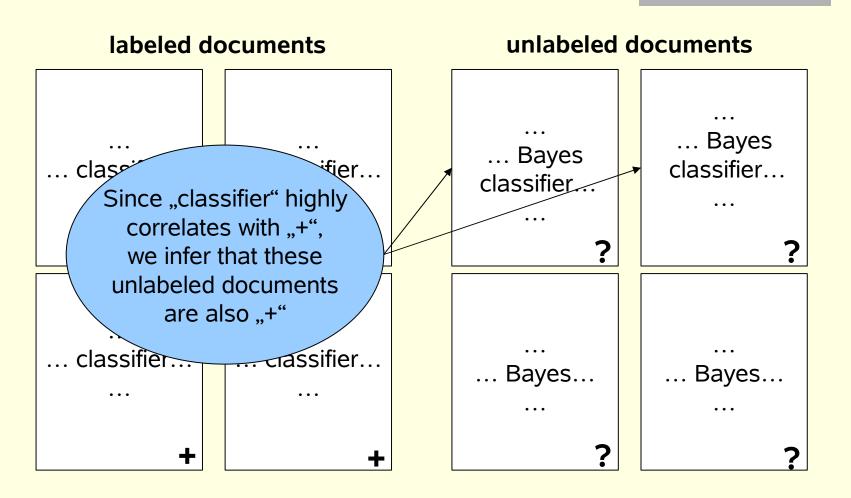
... classifier...

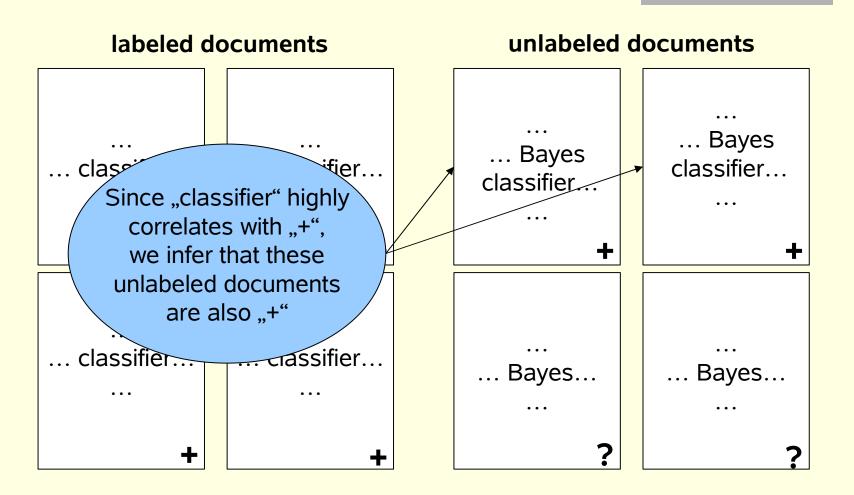
unlabeled documents

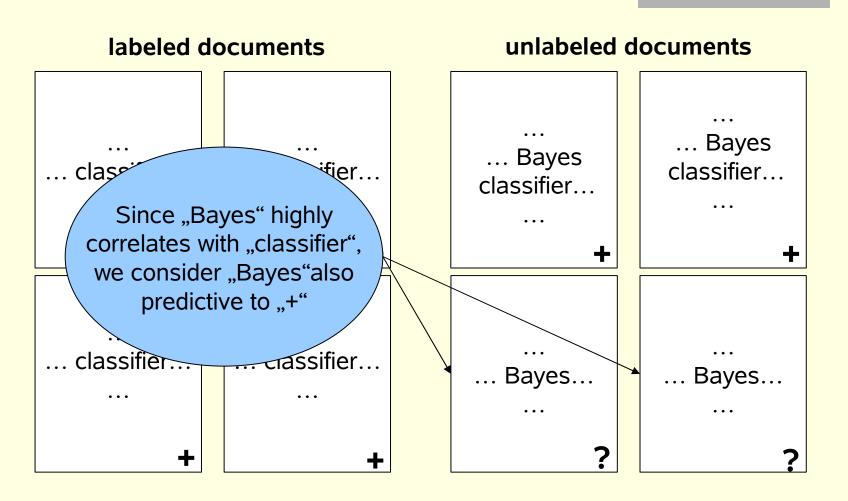
•••
Bayes
classifier
_
7

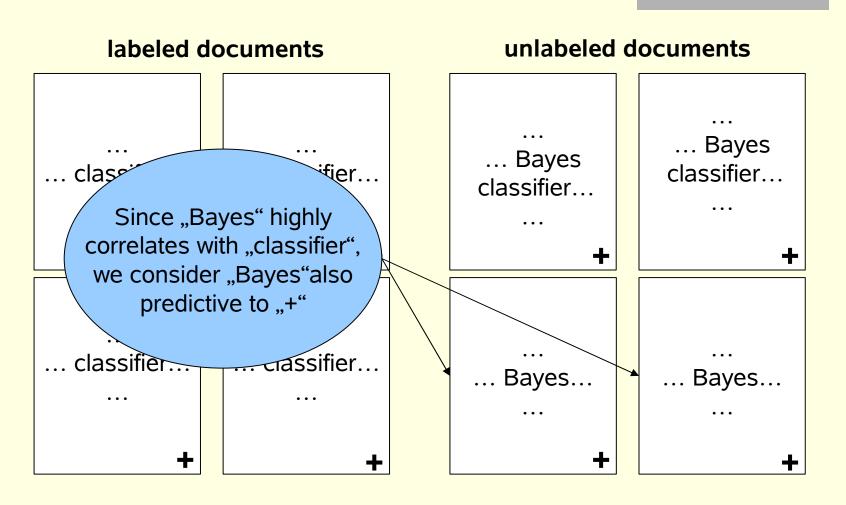




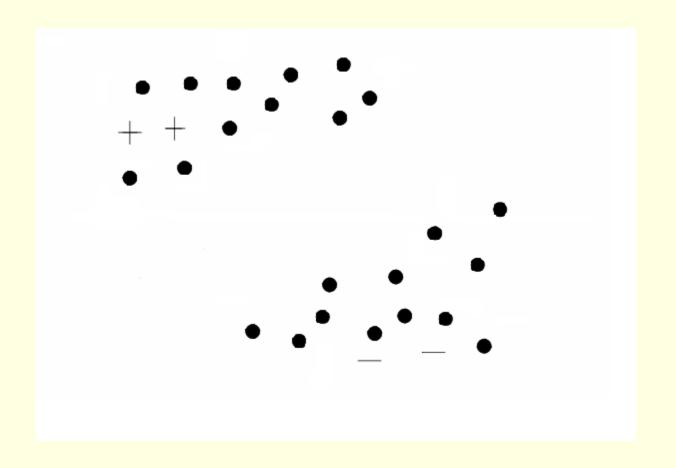




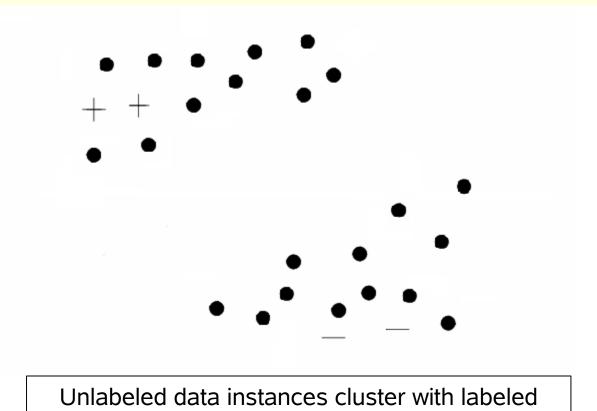




A Dataset favourable for Semi-Supervised Learning

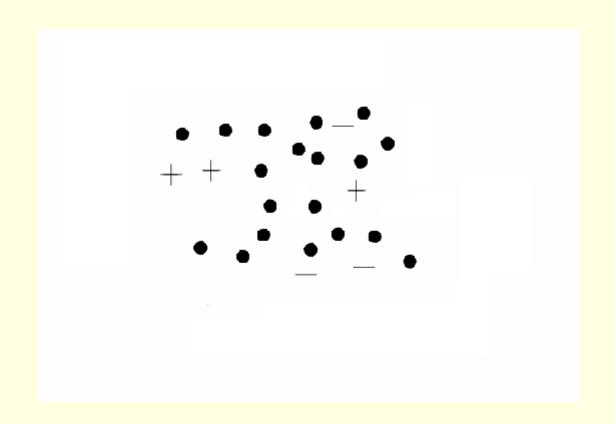


A Dataset favourable for Semi-Supervised Learning

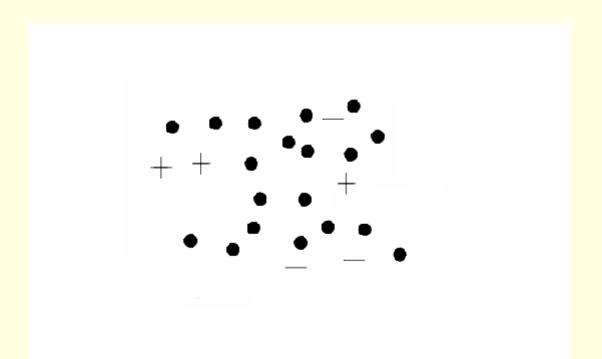


Unlabeled data instances cluster with labeled data instances of their pertaining class

A Dataset unfavourable for Semi-Supervised Learning



A Dataset unfavourable for Semi-Supervised Learning



Unlabeled data instances do **not** cluster with labeled data instances of their pertaining class

In computing, **bootstrapping** refers to a process where a simple system activates another more complicated system that serves the same purpose. It is a solution to the *chicken-and-egg problem* of starting a certain system without the system already functioning.

In computing, **bootstrapping** refers to a process where a simple system activates another more complicated system that serves the same purpose. It is a solution to the *chicken-and-egg problem* of starting a certain system without the system already functioning.

How does this translate to Semi-Supervised Learning?

In computing, **bootstrapping** refers to a process where a <u>simple system</u> (=supervised classifier using small amounts of labeled data) activates another more complicated system that serves the same purpose. It is a solution to the *chicken-and-egg problem* of starting a certain system without the system already functioning.

How does this translate to Semi-Supervised Learning?

In computing, **bootstrapping** refers to a process where a simple system (=supervised classifier using small amounts of labeled data) activates another more complicated system (=semi-supervised classifier that uses labeled and unlabeled data) that serves the same purpose. It is a solution to the chickenand-egg problem of starting a certain system without the system already functioning.

How does this translate to Semi-Supervised Learning?

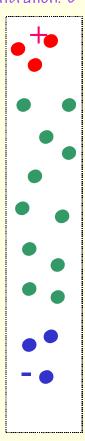
Bootstrapping – The Origin of the Term

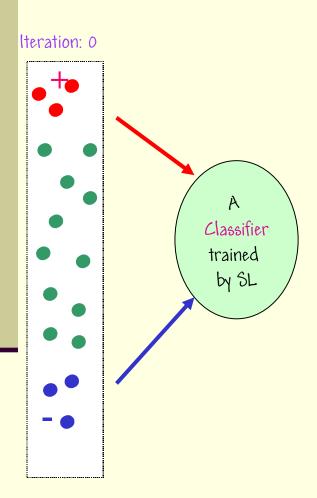
Bootstrapping alludes to a German legend about a **Baron Muench**hausen, who was able to lift himself out of a swamp by pulling himself up by his own hair (see picture on the right).

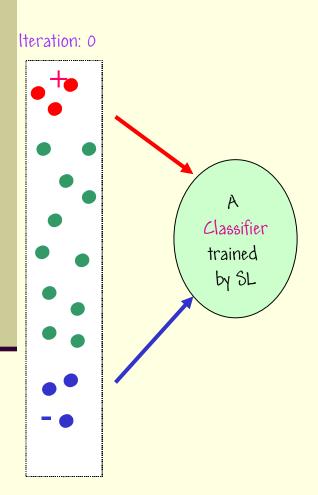
Bootstrapping – The Origin of the Term

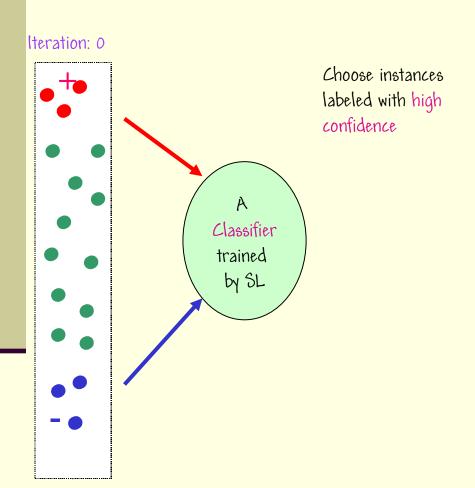
In later versions he was using his own **bootstraps** to pull himself out of the sea.

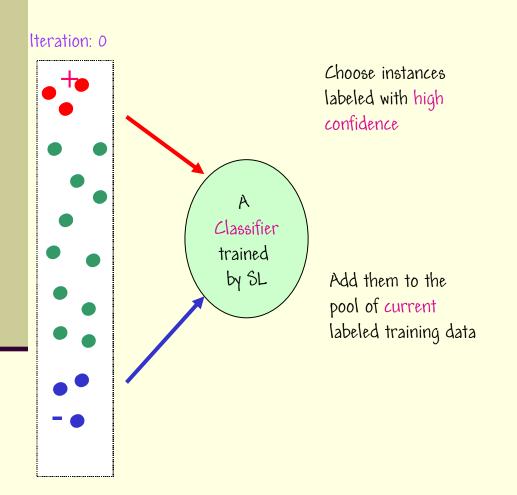
Iteration: 0

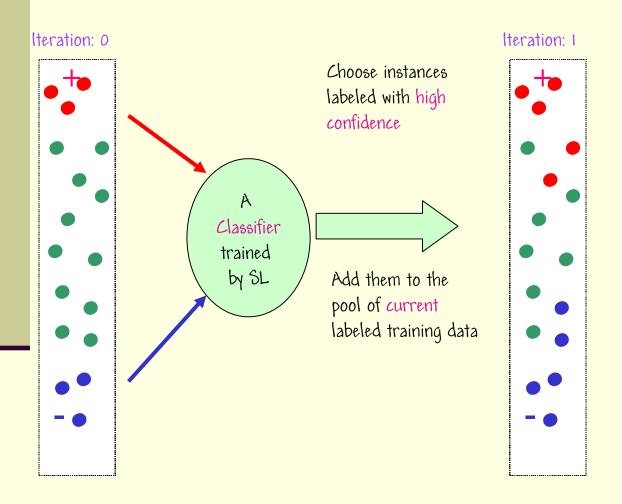


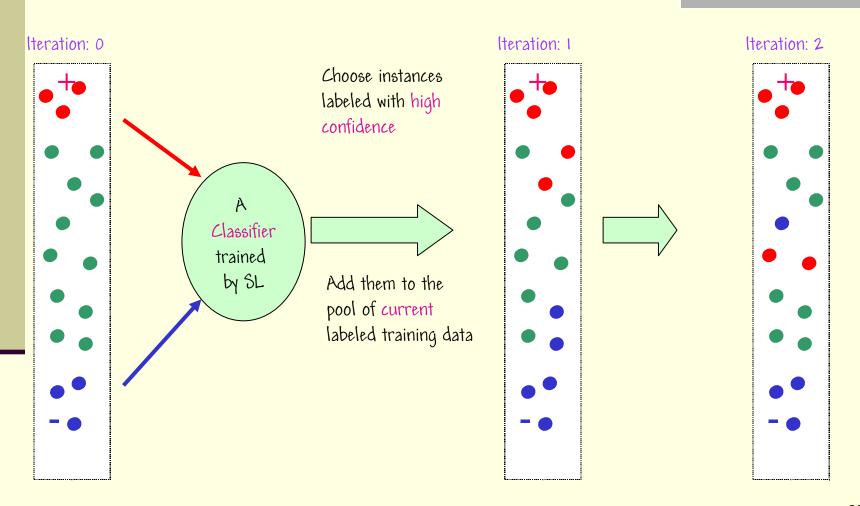


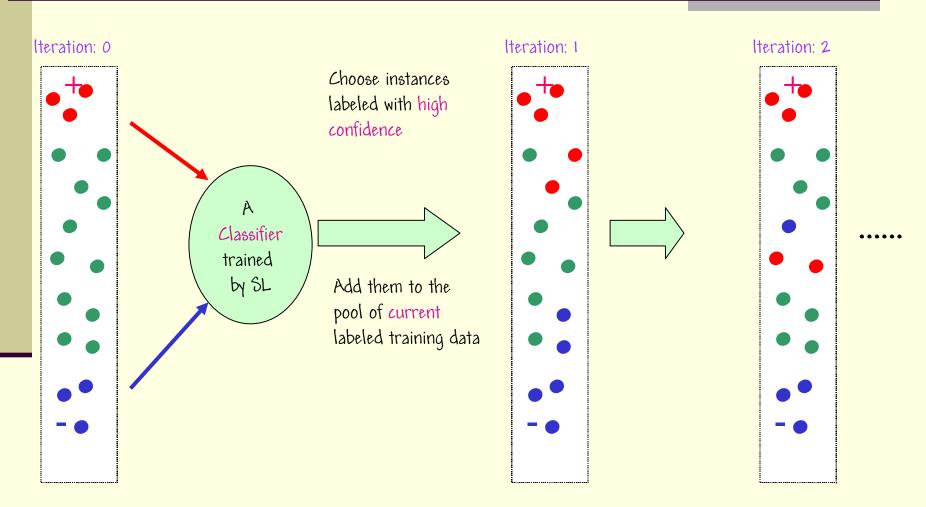


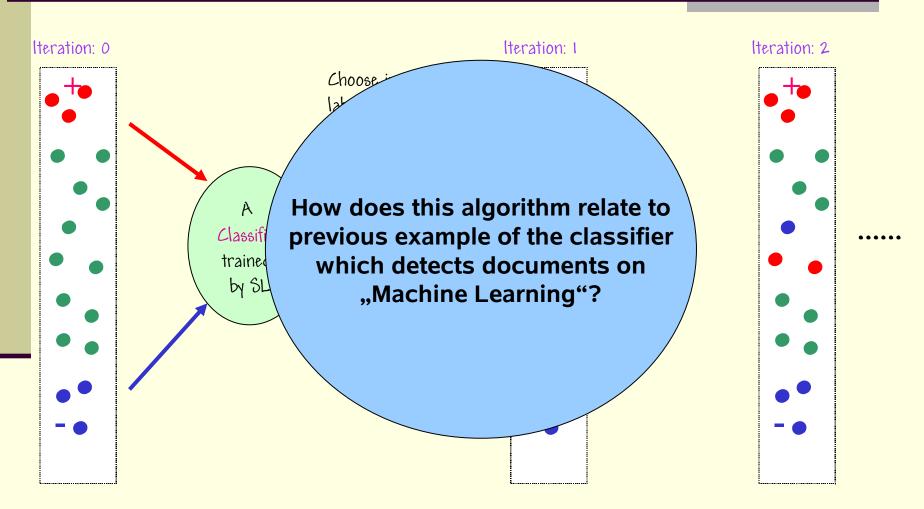












The Expectation Maximization (EM) Algorithm

- The EM algorithm is a meta algorithm that can be applied to any probabilistic model which depends on unobserved/hidden variables
- We consider the derivation for a *Multinomial Naive Bayes* classifier in this lecture
- The standard supervised version was presented last lecture!

- Conceptional Idea:
 - Estimate a model from the labeled data
 - 2. Label the unlabeled data using current model
 - 3. Re-estimate the model incl. the labeled data from Step 2
 - 4. Repeat Steps 2-3 until convergence has been reached
- See also (Dempster1977)

- Conceptional Idea:
 - Estimate a model from the labeled data
 - 2. Label the unlabeled data using current model (*E-Step*)
 - 3. Re-estimate the model incl. the labeled data from Step 2
 - 4. Repeat Steps 2-3 until convergence has been reached
- See also (Dempster1977)

Conceptional Idea:

- 1. Estimate a model from the labeled data
- 2. Label the unlabeled data using current model (*E-Step*)
- Re-estimate the model incl. the labeled data from Step 2 (*M-Step*)
- 4. Repeat Steps 2-3 until convergence has been reached See also (Dempster1977)

Notation

- The set of classes is C and a specific class is denoted by c_i
- The set of documents is D and a specific document is denoted by d_i
- The set of documents D can be divided into the set of labeled documents D^{l} and unlabeled documents D^{u} (specific documents are d^{l} and d^{u} , respectively)
- The class of a labeled document d^{l} is denoted by $c_{d^{l}}$
- The vocabulary is V and a specific word is denoted by x_k

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)}$$

Bayes Theorem

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)}$$

Multiplication Rule

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

Independence
Assumption of
Words in a
Document

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

At iteration 0:

- All $P(c_i)$ and $P(x_k|c_i)$ are directly estimated from the labeled data
- No information is drawn from the unlabeled data yet
- Initial estimates of $P(x_k|c_i)$ heavily rely on smoothing

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

M-Step:
$$P(x_k|c_i) = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{Z(c_i)}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

M-Step:
$$P(x_k|c_i) = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{Z(c_i)} = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{\sum_{n=1}^{|V|} \sum_{m=1}^{|D|} N(x_n, d_m) \cdot P(c_i|d_m)}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

M-Step:
$$P(x_k|c_i) = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{Z(c_i)} = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{\sum_{n=1}^{|V|} \sum_{m=1}^{|D|} N(x_n, d_m) \cdot P(c_i|d_m)}$$

$$P(c_i) = \frac{\sum_{j=1}^{|D|} P(c_i|d_j)}{Z}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

M-Step:
$$P(x_k|c_i) = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{Z(c_i)} = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{\sum_{n=1}^{|V|} \sum_{m=1}^{|D|} N(x_n, d_m) \cdot P(c_i|d_m)}$$

$$P(c_{i}) = \frac{\sum_{j=1}^{|D|} P(c_{i}|d_{j})}{Z} = \frac{\sum_{j=1}^{|D|} P(c_{i}|d_{j})}{\sum_{l=1}^{|C|} \sum_{m=1}^{|D|} P(c_{l}|d_{m})}$$

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

M-Step:
$$P(x_k|c_i) = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{Z(c_i)} = \frac{\sum_{j=1}^{|D|} N(x_k, d_j) \cdot P(c_i|d_j)}{\sum_{n=1}^{|V|} \sum_{m=1}^{|D|} N(x_n, d_m) \cdot P(c_i|d_m)}$$

$$P(c_i) = \frac{\sum_{j=1}^{|D|} P(c_i|d_j)}{Z} = \frac{\sum_{j=1}^{|D|} P(c_i|d_j)}{\sum_{l=1}^{|C|} \sum_{m=1}^{|D|} P(c_l|d_m)} = \frac{\sum_{j=1}^{|D|} P(c_i|d_j)}{|D|}$$

59

E-Step:
$$P(c_i|d_j) = \frac{P(c_i) \cdot P(d_j|c_i)}{P(d_j)} = \frac{P(c_i) \cdot P(d_j|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot P(d_j|c_l)} = \frac{P(c_i) \cdot \prod_{x_k \in d_j} P(x_k|c_i)}{\sum_{l=1}^{|C|} P(c_l) \cdot \prod_{x_k \in d_j} P(x_k|c_l)}$$

M-Step:

Use $P(x_k|c_i)$ and $P(c_i)$ from iteration n for the estimation of $P(c_i|d_i)$ at iteration n+1

$$P(x_{k}|c_{i}) = \frac{\sum_{j=1}^{|D|} N(x_{k}, d_{j}) \cdot P(c_{i}|d_{j})}{\sum_{n=1}^{|V|} \sum_{m=1}^{|D|} N(x_{n}, d_{m}) \cdot P(c_{i}|d_{m})}$$

$$P(c_i) = \frac{\sum_{j=1}^{|D|} P(c_i|d_j)}{|D|}$$

After each interation compute Likelihood of the entire dataset L(D) with current model:

$$L(D) = \prod_{j=1}^{|D^l|} P(c_{d_j^l}) P(d_j^l | c_{d_j^l}) \prod_{n=1}^{|D^u|} \sum_{i=1}^{|C|} P(c_i) P(d_n^u | c_i)$$

After each interation compute Likelihood of the entire dataset L(D) with current model:

$$L(D) = \prod_{j=1}^{|D^l|} P(c_{d_j^l}) P(d_j^l | c_{d_j^l}) \prod_{n=1}^{|D^u|} \sum_{i=1}^{|C|} P(c_i) P(d_n^u | c_i)$$

For labeled documents only use the actual class the document has been labeled with

After each interation compute Likelihood of the entire dataset L(D) with current model:

$$L(D) = \prod_{j=1}^{|D^l|} P(c_{d_j^l}) P(d_j^l | c_{d_j^l}) \prod_{n=1}^{|D^u|} \sum_{i=1}^{|C|} P(c_i) P(d_n^u | c_i)$$

For unlabeled documents use the weighted sum over all classes

After each interation compute Likelihood of the entire dataset L(D) with current model:

$$L(D) = \prod_{j=1}^{|D^l|} P(c_{d_j^l}) P(d_j^l | c_{d_j^l}) \prod_{n=1}^{|D^u|} \sum_{i=1}^{|C|} P(c_i) P(d_n^u | c_i)$$

- Iterate until Likelihood converges
- Alternatively: fix number of iterations

EM – What actually happens

Initialization:

- Problem 1: Many words in the vocabulary are not observed in the labeled training set → they are assigned a *low* back-off probability (probability is too low for predictive words!)
- Problem 2: Other words occurring in the labeled training set might have received a too high probability

Iteration:

- Solution to Problem 1:
 - Use correlation among features to determine which words only observed in the unlabeled dataset also correlate with the different classes
 - $P(x_j|c_i)$ (initially estimated with back-off!) will increase during model re-estimation for these features
- Solution to Problem2:
 - Hopefully words which have occurred disproportionately frequently in the labeled data will be less often observed in the unlabeled training set
 - $P(x_i|c_i)$ should gradually decrease

EM - What actually happens

- Experiments on the WebKB dataset from (Nigam2000)
- Webpages gathered from computer science departments
- Subset used in this experiments:
 - Classes: student, faculty, course, and project
 - Approximately 4200 webpages
- 2500 documents are used as unlabeled data
- Iteration 0 uses only 1 labeled data instance per class

Highest ranked words in class *course* throughout different iterations

Iteration 0	Iteration 1	Iteration 2
intelligence	DD	D
DD	D	DD
artificial	lecture	lecture
ınderstanding	cc	cc
$DD_{ m W}$	D^{\star}	DD:DD
dist	DD:DD	due
identical	handout	D^{\star}
rus	due	homework
arrange	problem	assignment
games	set	handout
dartmouth	tay	set
natural	DDam	hw
cognitive	yurttas	exam
logic	homework	problem
proving	kfoury	DDa.m
prolog	sec	postscript
knowledge	postscript	solution
human	exam	quiz
representation	solution	chapter
field	assaf	ascii

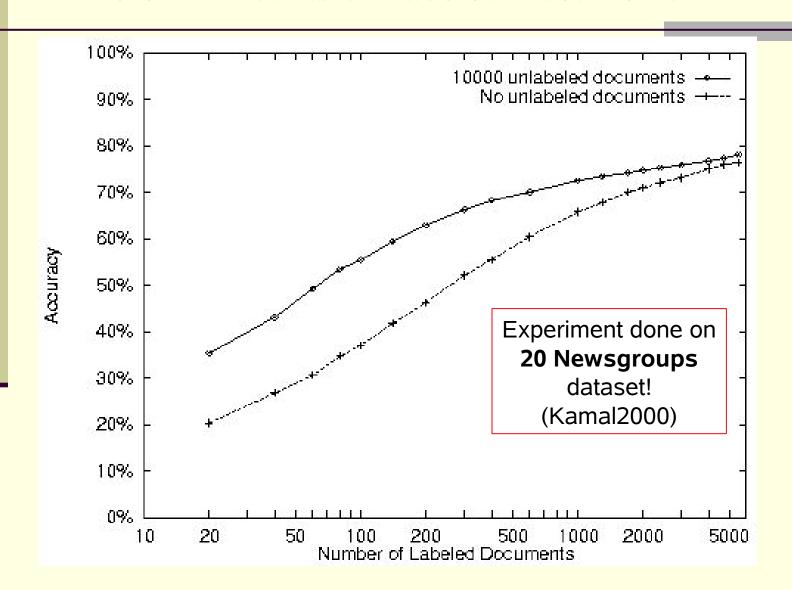
Highest ranked words in class *course* throughout different iterations

Iteration 0		Iteration 1	Iteration 2
intelligence		DD	D
DD		D	DD
artificial		lecture	lecture
understanding		cc	cc
DD_{W}	Terms with	D^{\star}	DD:DD
dist		DD:DD	due
identical	no general	handout	D^{\star}
rus	significance	due	homework
arrange	for the class	problem	assignment
games		set	handout
dartmouth	to be	tay	set
natural	modeled	DDa.m	hw
cognitive		yurttas	exam
logic		homework	problem
proving		kfoury	DDa,m
prolog		sec	postscript
knowledge		postscript	solution
human		exam	quīz
representation		solution	chapter
field		assaf	ascii

Highest ranked words in class *course* throughout different iterations

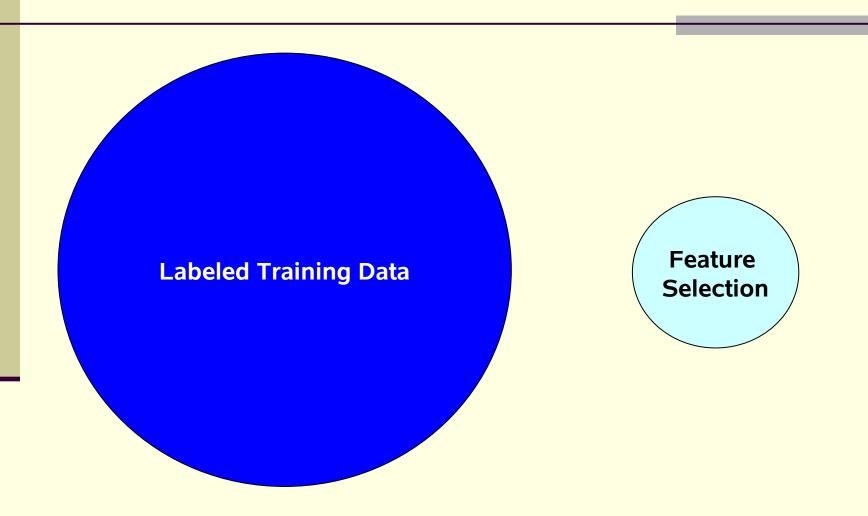
Iteration 0	Iteration 1		Iteration 2
intelligence	DD		D
DD	D		DD
artificial	lecture	Terms with	lecture
understanding	cc	general	cc
$DD_{ m W}$	D^{\star}		DD:DD
dist	DD:DD	significance	due
identical	handout	for the class	D^{\star}
rus	due	to be	homework
arrange	problem		assignment
games	set	modeled	handout
dartmouth	tay		」 ∖ \ set
natural	DDa.m		\\ hw
cognitive	yurttas		exam
logic	homework		problem
proving	kfoury		DDa.m
prolog	sec		postscript
knowledge	postscript		solution
human	exam		quiz
representation	solution		chapter
field	assaf		ascii

Improvement of Semi-Supervised Learning Using Different Amounts of Labeled Documents

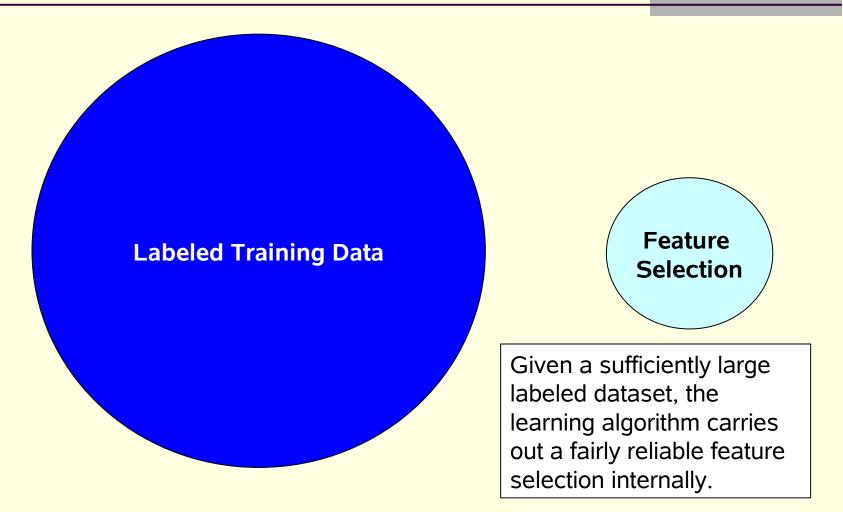


The Importance of Feature Selection in Semi-Supervised Learning (on Text Classification)

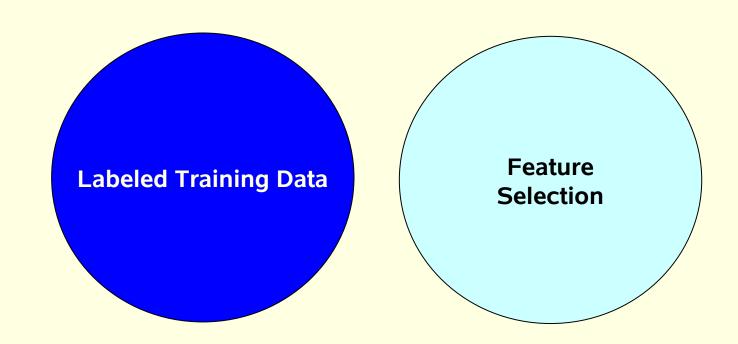
The Relation between Labeled Training Data and Feature Selection in **Supervised Learning** on Text Classification



The Relation between Labeled Training Data and Feature Selection in **Supervised Learning** on Text Classification



The Relation between Labeled Training Data and Feature Selection in **Semi-Supervised Learning** on Text Classification



The Relation between Labeled Training Data and Feature Selection in **Semi-Supervised Learning** on Text Classification



In SSL, the learning algorithm is less robust and a separate feature selection is more important.

A Unified Representation of Machine Learning Classifiers

Most Machine Learning classifiers learn a function g which is a linear combination of weighted features:

$$g(\vec{x}) = x_1 \cdot w_1 + x_2 \cdot w_2 + ... + x_n w_n (+b)$$

g is transformed into a binary classifier:

if
$$g(\vec{x}) > \delta$$
 then c_1 else c_2

A Unified Representation of Machine Learning Classifiers

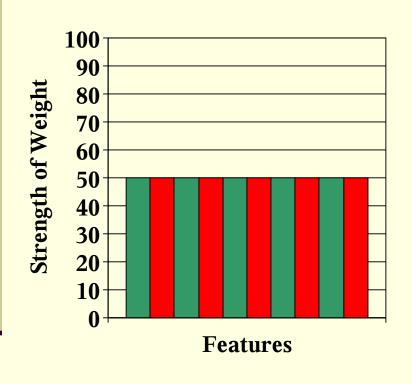
Most Machine Learning classifiers learn a function g which is a linear combination of weighted features:

$$g(\vec{x}) = x_1 \cdot w_1 + x_2 \cdot w_2 + ... + x_n w_n (+b)$$

 \blacksquare *g* is transformed into a binary classifier:

if
$$g(\vec{x}) > \delta$$
 then c_1 else c_2

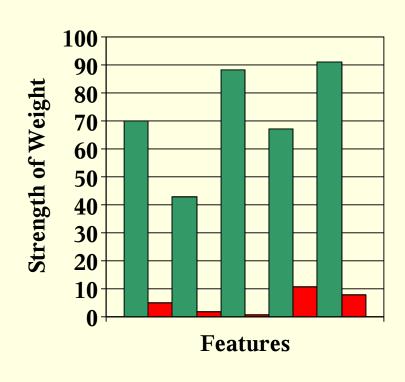
 δ is a threshold value

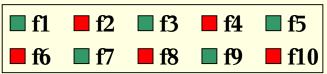


 ■ f1
 ■ f2
 ■ f3
 ■ f4
 ■ f5

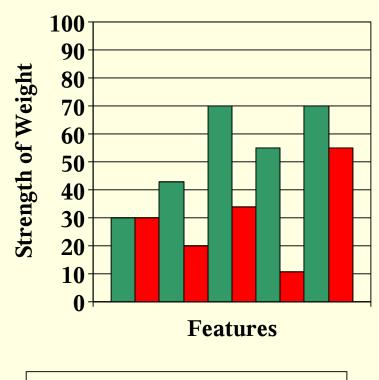
 ■ f6
 ■ f7
 ■ f8
 ■ f9
 ■ f10

- Figure left displays features
- Green features are discriminative (helpful) features
- Red features are noisy (obstructive) features





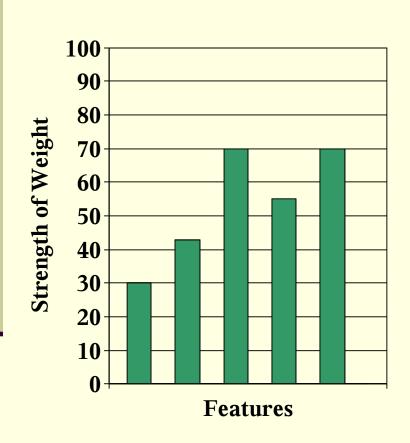
- In Supervised Learning there are plenty of labeled data instances
- Feature weights are estimated very reliably
- Discriminative features obtain a high weight
- Noisy features obtain a low weight



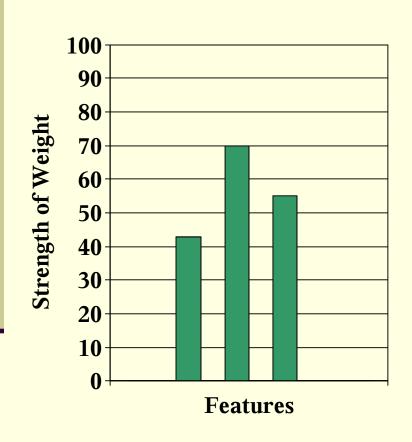
- In Semi-Supervised Learning there are only few labeled data instances available
- Noisy data features may not be properly downweighted
- Noisy features may lead classifier astray during bootstrapping

What does "Leading Astray" Mean?

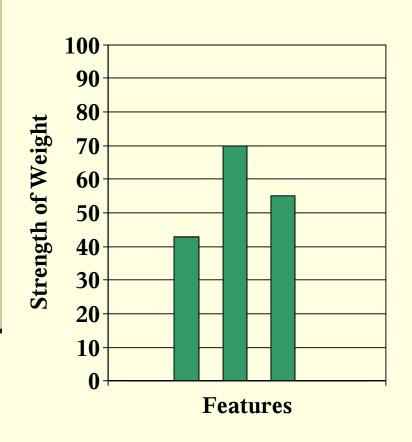
- Imagine a bad feature set applied to EM
- The classifier considers feature x_i a good predictor of class c_j because it is only co-occurring in labeled instances of this class
- However this co-occurrence is coincidental (remember the labeled dataset is usually very small in SSL) → feature x_i is a bad feature
- In subsequent iterations other features co-occurring with bad feature x_i will also be inferred to be predictive for c_j , but this is actually wrong and will degrade the performance of the classifier



Solution: use a good feature set, i.e. a feature set with only discriminative features



- Solution: use a good feature set, i.e. a feature set with only discriminative features
- Feature selection can be fairly restrictive, so that some discriminative features get lost as well



- Solution: use a good feature set, i.e. a feature set with only discriminative features
- Feature selection can be fairly restrictive, so that some discriminative features get lost as well
- But that is still better for SSL than using all features!!!

How can feature selection be done in SSL on text classification

- Correlation-based feature selection methods (e.g. Point-wise Mutual Information) do not work well in SSL, since too few labeled instances are available
- Stopword removal may help (i.e. download a list of function words from the web)
- Only consider frequent words in your entire data-set (e.g. Top 2000 words)
- Use your prior knowledge and construct your feature set manually (in case this is cheaper than providing more labeled data instances, otherwise try supervised learning!)

Applications of Semi-Supervised Learning in NLP

- Text Classification
- Part-of-Speech Tagging
- Syntactic Parsing
- Word Sense Disambiguation
- Information Extraction (e.g. Relation Extraction)
- Machine Translation

Other state-of-the-art algorithms

- Extensions to EM (Kamal2000)
 - Lambda-EM (weighting unlabeled and labeled data)
 - M-EM (i.e. with multiple mixture components)
- Co-Training (Blum1998)
- Transductive Support Vector Machines (Joachims1999)
- Label Propagation (Niu2005)
- Spectral Graph Clustering (Joachims2003)

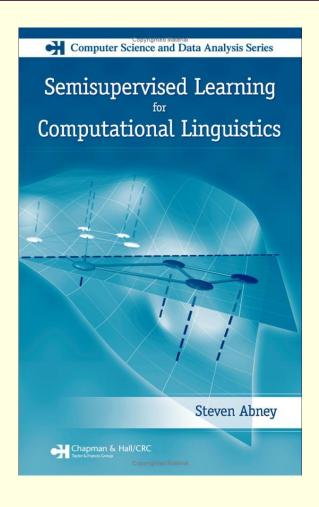
A Word of Warning

- Semi-Supervised Learning does not always work!
 - Classification performance of initial model might be too low (bootstrapping only adds further noise)
 - Classifier from initial (supervised) model might already produce maximal performance
- There are more degrees of freedom that have to be taken into account:
 - Size of the feature set
 - Size of the unlabeled data set
 - Many classifier-specific parameters!

Summary

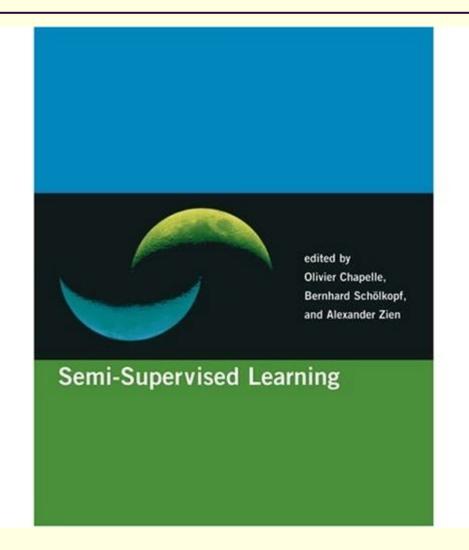
- Semi-Supervised Learning works well when only few labeled data are available
- Most Semi-Supervised Learning algorithms are bootstrapping algorithms
- Feature selection is more important in Semi-Supervised Learning than in Supervised Learning (on text classification)
- Bad feature sets may lead classifier astray

Relevant Books



Semisupervised Learning for Computational Linguistics by Steven Abney
Chapman & Hall
2007

Relevant Books



Semi-Supervised Learning

by Olivier Chapelle,
Bernhard Schölkopf,
Alexander Zien (Editors)
MIT Press
2006

References

- Maximum Likelihood from Incomplete Data via the EM Algorithm. A. Dempster, N. Laird, and D. Rubin. Journal of the Royal Statistical Society 1977.
- Combining Labeled and Unlabeled Data with Co-Training. A. Blum and T. Mitchell, 1998.
- Transductive Inference for Text Classification using Support Vector Machines. T. Joachims. Proceedings of ICML 1999.
- Text Classification from Labeled and Unlabeled Documents using EM. K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Machine Learning, 39(2/3),2000.
- Transductive Learning via Spectral Graph Partitioning. T. Joachims. Proceedings of ICML 2003.
- Understanding the Yarowsky Algorithm. S. Abney. Computational Linguistics, vol. 30, 2004.
- Word Sense Disambiguation Using Label Propagation Based Semi-Supervised Learning. Z.-Y. Niu, D. Ji, and C. Tan, Proceedings of ACL 2005.