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Outline of Talk

 The Concept of Semi-Supervised Learning
 Bootstrapping
 The Yarowksy Algorithm
 The Expectation Maximization Algorithm
 The Importance of Feature Selection in Semi-

Supervised Learning (on Text Classification)
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The Concept of 
Semi- 

Supervised 
Learning
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Semi-Supervised Learning - An Illustration
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Semi-Supervised Learning - An Illustration



  13

Semi-Supervised Learning - An Illustration

construct a
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Semi-Supervised Learning - An Illustration

more labeled
data may
improve

classification
accuracy
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Why are unlabeled data useful?

 We will use (binary) text classification to study 
this problem

 Unlabeled data are usually plentiful, labeled 
data are expensive

 Unlabeled data provide information about the 
joint probability distribution over words and 
collocations (in texts) 
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Why are unlabeled data useful?

 Imagine the following setting:
 You want to build a classifier which is able to 

detect text documents about „Machine 
Learning“

 We have labeled and unlabeled documents
 For simplification we denote

 „+“: label for machine learning documents
 „-“: label for other documents 
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A Dataset favourable for Semi-
Supervised Learning
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A Dataset favourable for Semi-
Supervised Learning

Unlabeled data instances cluster with labeled 
data instances of their pertaining class
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A Dataset unfavourable for Semi-
Supervised Learning
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A Dataset unfavourable for Semi-
Supervised Learning

Unlabeled data instances do not cluster with 
labeled data instances of their pertaining class
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Bootstrapping

In computing, bootstrapping refers to a 
process where a simple system activates 
another more complicated system that serves 
the same purpose. It is a solution to the 
chicken-and-egg problem of starting a certain 
system without the system already 
functioning.
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Bootstrapping

In computing, bootstrapping refers to a 
process where a simple system (=supervised 
classifier using small amounts of labeled 
data) activates another more complicated 
system (=semi-supervised classifier that uses 
labeled and unlabeled data) that serves the 
same purpose. It is a solution to the chicken-
and-egg problem of starting a certain system 
without the system already functioning.

How does this translate to Semi-Supervised 
Learning?
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Bootstrapping – The Origin of the Term

Bootstrapping 
alludes to a German 
legend about a 
Baron Muench-
hausen, who was 
able to lift himself 
out of a swamp by 
pulling himself up by 
his own hair (see 
picture on the right).
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Bootstrapping – The Origin of the Term

In later versions he 
was using his own 
bootstraps to pull 
himself out of the 
sea.
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The Yarowsky 
Algorithm
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The Yarowsky Algorithm

Iteration: 0
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The Yarowsky Algorithm

Iteration: 0

+

-

A 
Classifier
trained 
by SL

Choose instances 
labeled with high 
confidence

Iteration: 1

+

-

Add them to the
pool of current 
labeled training data

Iteration: 2

+

-

……
How does this algorithm relate to
previous example of the classifier

which detects documents on
„Machine Learning“?
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The Expectation 
Maximization 

(EM) Algorithm
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Expectation Maximization Algorithm

 The EM algorithm is a meta algorithm that 
can be applied to any probabilistic model 
which depends on unobserved/hidden 
variables

 We consider the derivation for a Multinomial 
Naive Bayes classifier in this lecture

 The standard supervised version was 
presented last lecture!
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Expectation Maximization Algorithm

 Conceptional Idea:
1. Estimate a model from the labeled data

2. Label the unlabeled data using current model

3. Re-estimate the model incl. the labeled data from Step 2

4. Repeat Steps 2-3 until convergence has been reached

 See also (Dempster1977)
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Expectation Maximization Algorithm

 Conceptional Idea:
1. Estimate a model from the labeled data

2. Label the unlabeled data using current model (E-Step)

3. Re-estimate the model incl. the labeled data from Step 2

4. Repeat Steps 2-3 until convergence has been reached

 See also (Dempster1977)
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Expectation Maximization Algorithm

 Conceptional Idea:
1. Estimate a model from the labeled data

2. Label the unlabeled data using current model (E-Step)

3. Re-estimate the model incl. the labeled data from Step 2 
(M-Step)

4. Repeat Steps 2-3 until convergence has been reached

See also (Dempster1977)
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Notation

 The set of classes is C and a specific class is 
denoted by ci

 The set of documents is D and a specific document is 
denoted by dj

 The set of documents D can be divided into the set of 
labeled documents Dl and unlabeled documents Du 
(specific documents are dl and du, respectively)

 The class of a labeled document dl is denoted by cdl

 The vocabulary is V and a specific word is denoted 
by xk
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Expectation Maximization Algorithm

P c i∣d j =
P c i ⋅P d j∣c i 

P d j 
E-Step:
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Expectation Maximization Algorithm

P c i∣d j =
P c i ⋅P d j∣c i 

P d j 
E-Step:

Bayes 
Theorem
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Expectation Maximization Algorithm
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Expectation Maximization Algorithm
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E-Step:
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Rule
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Expectation Maximization Algorithm
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Expectation Maximization Algorithm

P c i∣d j =
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Expectation Maximization Algorithm

At iteration 0:

 All P(ci) and P(xk|ci) are directly estimated from the 
labeled data

 No information is drawn from the unlabeled data yet

 Initial estimates of P(xk|ci) heavily rely on smoothing

P c i∣d j =
P ci ⋅P d j∣c i 

P d j 
=

P ci ⋅P d j∣ci 

∑
l=1

∣C∣

P c l ⋅P d j∣c l 

=

P ci ⋅∏
xk∈d j

P x k∣ci 

∑
l=1

∣C∣

P c l ⋅∏
x k∈d j

P  x k∣c l 
E-Step:
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Expectation Maximization Algorithm

P c i∣d j =
P c i ⋅P d j∣c i 

P d j 
=

P c i ⋅P d j∣ci 

∑
l=1

∣C∣

P c l ⋅P d j∣cl 

=

P ci ⋅∏
xk∈d j

P x k∣ci 

∑
l=1

∣C∣

P c l ⋅∏
x k∈d j

P  x k∣c l 

P  x k∣ci =
∑
j=1

∣D∣

N  xk , d j ⋅P ci∣d j 

∑
n=1

∣V ∣

∑
m=1

∣D∣

N  x n , dm⋅P c i∣dm 
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∣D∣
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M-Step:

Use P(xk|ci) and P(ci) 
from iteration n for the 
estimation of P(ci|dj) at 
iteration n+1
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Expectation Maximization Algorithm

 After each interation compute Likelihood of the entire 
dataset L(D) with current model:

L D =∏
j=1

∣Dl∣

P cd jl P d j
l ∣cd jl ∏

n=1

∣Du∣

∑
i=1

∣C∣

P c i P d n
u∣ci 
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Expectation Maximization Algorithm

 After each interation compute Likelihood of the entire 
dataset L(D) with current model:

L D =∏
j=1

∣Dl∣

P cd jl P d j
l ∣cd jl ∏

n=1

∣Du∣

∑
i=1

∣C∣

P c i P d n
u∣ci 

For labeled documents only use 
the actual class the document has 

been labeled with
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Expectation Maximization Algorithm

 After each interation compute Likelihood of the entire 
dataset L(D) with current model:

L D =∏
j=1

∣Dl∣

P cd jl P d j
l ∣cd jl ∏

n=1

∣Du∣

∑
i=1

∣C∣

P c i P d n
u∣ci 

For unlabeled documents use the 
weighted sum over all classes



  64

Expectation Maximization Algorithm

 After each interation compute Likelihood of the entire 
dataset L(D) with current model:

 Iterate until Likelihood converges
 Alternatively: fix number of iterations

L D =∏
j=1

∣Dl∣

P cd jl P d j
l ∣cd jl ∏

n=1

∣Du∣

∑
i=1

∣C∣

P c i P d n
u∣ci 
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EM – What actually happens
 Initialization:

 Problem 1: Many words in the vocabulary are not observed in 
the labeled training set  they are assigned a low back-off 
probability (probability is too low for predictive words!)

 Problem 2: Other words occurring in the labeled training set 
might have received a too high probability

 Iteration:
 Solution to Problem 1:

 Use correlation among features to determine which words only 
observed in the unlabeled dataset also correlate with the different 
classes

 P(xj|ci) (initially estimated with back-off!) will increase during model 
re-estimation for these features

 Solution to Problem2: 
 Hopefully words which have occurred disproportionately frequently in 

the labeled data will be less often observed in the unlabeled training set
 P(xj|ci) should gradually decrease
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EM  - What actually happens

 Experiments on the WebKB dataset from 
(Nigam2000)

 Webpages gathered from computer science 
departments

 Subset used in this experiments:
 Classes: student, faculty, course, and project
 Approximately 4200 webpages

 2500 documents are used as unlabeled data
 Iteration 0 uses only 1 labeled data instance 

per class
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Highest ranked words in class course 
throughout different iterations
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Highest ranked words in class course 
throughout different iterations

Terms with 
no general 
significance 
for the class 

to be 
modeled
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Highest ranked words in class course 
throughout different iterations 

Terms with 
general 

significance 
for the class 

to be 
modeled
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Improvement of Semi-Supervised Learning Using 
Different Amounts of Labeled Documents

Experiment done on 
20 Newsgroups 

dataset! 
(Kamal2000)
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The Importance of 
Feature Selection in 

Semi-Supervised 
Learning (on Text 

Classification)
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The Relation between Labeled Training Data and Feature 
Selection in Supervised Learning on Text Classification

Labeled Training Data Feature 
Selection
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The Relation between Labeled Training Data and Feature 
Selection in Supervised Learning on Text Classification

Labeled Training Data Feature 
Selection

Given a sufficiently large 
labeled dataset, the 
learning algorithm carries 
out a fairly reliable feature 
selection internally.
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The Relation between Labeled Training Data and Feature 
Selection in Semi-Supervised Learning on Text Classification

Labeled Training Data Feature
Selection
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The Relation between Labeled Training Data and Feature 
Selection in Semi-Supervised Learning on Text Classification

Labeled Training Data Feature
Selection

In SSL, the learning algorithm is less robust and 
a separate feature selection is more important.
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A Unified Representation of Machine 
Learning Classifiers

 Most Machine Learning classifiers learn a 
function g which is a linear combination of 
weighted features: 

 g is transformed into a binary classifier:

 

g  x =x 1⋅w1 x2⋅w2.. . xnwn b 

if g  x δ then c1 else c 2
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A Unified Representation of Machine 
Learning Classifiers

 Most Machine Learning classifiers learn a 
function g which is a linear combination of 
weighted features: 

 g is transformed into a binary classifier:

 

g  x =x 1⋅w1 x2⋅w2.. . xnwn b 

if g  x δ then c1 else c 2

δ is a threshold value
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Feature Weights and Feature Selection

  Figure left displays 
features

 Green features are 
discriminative (helpful) 
features

 Red features are noisy 
(obstructive) features
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Feature Weights and Feature Selection

  In Supervised Learning 
there are plenty of 
labeled data instances

 Feature weights are 
estimated very reliably

 Discriminative features 
obtain a high weight

 Noisy features obtain a 
low weight
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Feature Weights and Feature Selection

  In Semi-Supervised 
Learning there are only 
few labeled data 
instances available

 Noisy data features 
may not be properly 
downweighted

 Noisy features may lead 
classifier astray during 
bootstrapping
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What does „Leading Astray“ Mean?

 Imagine a bad feature set applied to EM

 The classifier considers feature xi a good predictor of 
class cj because it is only co-occurring in labeled 
instances of this class

 However this co-occurrence is coincidental 
(remember the labeled dataset is usually very small 
in SSL)  feature xi is a bad feature

 In subsequent iterations other features co-occurring 
with bad feature xi will also be inferred to be 
predictive for cj, but this is actually wrong and will 
degrade the performance of the classifier
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Feature Weights and Feature Selection

  Solution: use a good 
feature set, i.e. a 
feature set with only 
discriminative features
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Feature Weights and Feature Selection

  Solution: use a good 
feature set, i.e. a 
feature set with only 
discriminative features

 Feature selection can 
be fairly restrictive, so 
that some discriminative 
features get lost as well
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Feature Weights and Feature Selection

  Solution: use a good 
feature set, i.e. a 
feature set with only 
discriminative features

 Feature selection can 
be fairly restrictive, so 
that some discriminative 
features get lost as well

 But that is still better for 
SSL than using all 
features!!!
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How can feature selection be done in 
SSL on text classification 
 Correlation-based feature selection methods (e.g. 

Point-wise Mutual Information) do not work well in 
SSL, since too few labeled instances are available

 Stopword removal may help (i.e. download a list of 
function words from the web)

 Only consider frequent words in your entire data-set 
(e.g. Top 2000 words)

 Use your prior knowledge and construct your feature 
set manually (in case this is cheaper than providing 
more labeled data instances, otherwise try 
supervised learning!)
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Applications of Semi-Supervised 
Learning in NLP
 Text Classification
 Part-of-Speech Tagging
 Syntactic Parsing
 Word Sense Disambiguation
 Information Extraction (e.g. Relation 

Extraction)
 Machine Translation
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Other state-of-the-art algorithms 

 Extensions to EM (Kamal2000)
 Lambda-EM (weighting unlabeled and labeled 

data)
 M-EM (i.e. with multiple mixture components)

 Co-Training (Blum1998)
 Transductive Support Vector Machines 

(Joachims1999)
 Label Propagation (Niu2005)
 Spectral Graph Clustering (Joachims2003)
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A Word of Warning

 Semi-Supervised Learning does not always work!
 Classification performance of initial model might be too 

low (bootstrapping only adds further noise)
 Classifier from initial (supervised) model might already 

produce maximal performance

 There are more degrees of freedom that have to be 
taken into account:
 Size of the feature set
 Size of the unlabeled data set
 Many classifier-specific parameters!
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Summary

 Semi-Supervised Learning works well when 
only few labeled data are available

 Most Semi-Supervised Learning algorithms 
are bootstrapping algorithms

 Feature selection is more important in Semi-
Supervised Learning than in Supervised 
Learning (on text classification)

 Bad feature sets may lead classifier astray
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Relevant Books

  

 
    

Semisupervised Learning for 
Computational Linguistics 
by Steven Abney 
Chapman & Hall
2007
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Relevant Books

Semi-Supervised Learning
by Olivier Chapelle, 
Bernhard Schölkopf, 
Alexander Zien (Editors)
MIT Press
2006
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