Computational Linguistics

Latent Spaces and Matrix Factorization

Stefan Thater \& Dietrich Klakow

FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes
Summer 2013

Goal

Goal:

treat document clustering and word clustering on the same footing (same semantic space)
find low dimensional representations

The word document matrix

Clustering

Document clustering

describe each document by a vector containing the frequencies of the words

Word clustering

describe each word by a vector containing the frequencies of its occurance in different document

Joint word and document clustering

The word document matrix:
Enter frequency (or tf-idf) for each word and document in a square scheme of numbers (matrix)

Matrices

A matrix is an array with two indices
e.g. in a python program this could be A [i] [j] with $\mathrm{i}=1 . . \mathrm{N}$ and $j=1 . . . M$
$a_{i, j}$
When writing, often a subscript notation is used
or a square scheme:

$$
A=\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, M} \\
\ldots & a_{i, j} & \ldots \\
a_{N, 1} & \ldots & a_{N, M}
\end{array}\right)
$$

Specific example of a 2×3 matrix

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0.5 \\
-2 & 0.1 & -8
\end{array}\right)
$$

The transpose of a matrix

The two indices are swapped
e.g. in a python program this could be At [j][i]=A[i][j] for $\mathrm{i}=1 . . \mathrm{N}$ and $\mathrm{j}=1$...M
for the matrices from the previous slide we have: $\quad A^{t}=\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, N} \\ \ldots & a_{j, i} & \ldots \\ a_{M, 1} & \ldots & a_{M, N}\end{array}\right)$

Specific example of a 2×3 matrix $\quad A=\left(\begin{array}{ccc}2 & -5 & 0.5 \\ -2 & 0.1 & -8\end{array}\right)$

What is A^{t}

Product of two matrices

The elements of a product matrix can be calculated in a python program by

```
for i in range(1,N+1):
    for j in range(1,M+1):
        for k in range(1,K+1):
        C[i][j] = A[i][k]*B[k][j]
```

In math notation $\quad C=A \cdot B$
with

$$
c_{i, j}=\sum_{k=1}^{K} a_{i, k} b_{k, j}
$$

Unit matrix

Unit matrix: the element are the indicator function

$$
a_{i, j}=\delta_{i, j}
$$

Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Often the unit matrix is denoted by a 1

Orthogonal matrices

a matrix A is orthogonal if

$$
1=A^{t} \cdot A
$$

Is the following matrix orthogonal:

$$
A=\left(\begin{array}{cc}
0.96 & -0.28 \\
0.28 & 0.96
\end{array}\right)
$$

Matrices in python

tative NumPy Tutorial - Mozilla Firefox

Bearbeiten Ansicht Ghronik Lesezeichen Extras Hilfe
Search web
ed Searches:
on Developers

ramming

on
n
ramming
on Language
lel Computing
nd Order
rential Equation
on
ramming
uage
t Python
duction To
erical Analysis
on Systems
on Books
Differential
tions

Simple Array Operations

See linalg.py in numpy folder for more.

```
>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0], [3.0, 4.0]])
>> print a
[[ 1. 2.]
[ 3. 4.]]
>>> a.transpose(!
array([[ 1., 3.],
    [ 2., 4.]])
>>> inv(a)
array([[-2. , 1. ],
    [ 1.5, -0.5]])
>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1., 0.],
    [ 0., 1.]])
>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot (j, j) # matrix product
array([[-1., 0.],
    [ 0., -1.]])
>> trace(u) # trace
2.0
>>> Y = array([[5.], [7.]])
>> solve(a, y)
array([[-3.],
    [ 4.]])
>> eig(j)
```


Latent Semantic Analysis (LSA)

This section mostly follows Manning and Schütze Chapter 15

Singular Value Decomposition

Decompose A such that

$$
\widetilde{A}=T S D^{t}
$$

With $|\tilde{A}-A|^{2} \quad$ minimal
and

$$
T^{t} \cdot T=1 \quad D^{t} \cdot D=1
$$

Aatbydmatrix T atby matrix
S anby nmatrix D adby nmatrix

An artificial Example of

Singular Value Decomposition

Is

$$
T=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}
$$

An SVD of

$$
S=\boldsymbol{l} \sqrt{2}, \quad D=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)
$$

$$
A=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right)
$$

More realistic Example
(from Manning and Schütze)

Decompose

$$
A=\left(\begin{array}{l|llllll}
& d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\
\hline \text { cosmonaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

More realistic Example

 (from Manning and Schütze)$\mathrm{D}^{\mathrm{t}}=\left(\begin{array}{l|rrrrrr} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & d_{6} \\ \hline \text { Dimension 1 } & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\ \text { Dimension 2 } & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\ \text { Dimension 3 } & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\ \text { Dimension 4 } & 0.00 & 0.00 & 0.58 & 0.00 & -0.58 & 0.58 \\ \text { Dimension 5 } & -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22\end{array}\right)$
$T^{\mathrm{t}}=\left(\begin{array}{l|rrrrr} & \text { cosm. } & \text { astr. } & \text { moon } & \text { car } & \text { truck } \\ \hline \text { Dimension 1 } & -0.44 & -0.13 & -0.48 & -0.70 & -0.26 \\ \text { Dimension 2 } & -0.30 & -0.33 & -0.51 & 0.35 & 0.65 \\ \text { Dimension 3 } & 0.57 & -0.59 & -0.37 & 0.15 & -0.41 \\ \text { Dimension 4 } & 0.58 & 0.00 & 0.00 & -0.58 & 0.58 \\ \text { Dimension 5 } & 0.25 & 0.73 & -0.61 & 0.16 & -0.09\end{array}\right)$

More realistic Example
(from Manning and Schütze)

$$
S=\left(\begin{array}{lllll}
2.16 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 1.59 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 1.28 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.39
\end{array}\right)
$$

Document-Document Similarity

Rewrite A

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
l_{1} & \vec{d}_{2} & \ldots & \vec{d}_{d}
\end{array}\right. \\
& \text { with } \vec{d}_{j} \text { a vector } \\
& \text { with word frequencies of the } \mathrm{j} \text { - th document }
\end{aligned}
$$

Similarity of i-th document with j-th document $\vec{d}_{i}^{t} \vec{d}_{j}$
All document-document similarities $A^{t} A$

Document-Document Similarity

$$
\begin{aligned}
\text { Rewrite } & \tilde{A}^{t} \tilde{A}= \\
& =\left(T S D^{t}\right)^{t} T S D^{t} \\
& =D S^{t} T^{t} T S D^{t} \\
& =D S^{t} S D^{t} \\
& =\left(S D^{t}\right)^{t} S D^{t}
\end{aligned}
$$

Measure similarity in subspace defined by $\quad S D^{t}$

More realistic Example

 (from Manning and Schütze)| | | d_{1} | d_{2} | d_{3} | d_{4} | d_{5} | d_{6} |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Result for $S D^{t}$ | | | | | | | |
| | Dimension 1 | -1.62 | -0.60 | -0.04 | -0.97 | -0.71 | -0.26 |
| | Dimension 2 | -0.46 | -0.84 | -0.30 | 1.00 | 0.35 | 0.65 |

More realistic Example
(from Manning and Schütze)

Decompose A such that

	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
d_{1}	1.00					
d_{2}	0.78	1.00				
d_{3}	0.40	0.88	1.00			
d_{4}	0.47	-0.18	-0.62	1.00		
d_{5}	0.74	0.16	-0.32	0.94	1.00	
d_{6}	0.10	-0.54	-0.87	0.93	0.74	1.00

An even more realistic example

An even more realistic example Document-Document Similarity

Representation for Documents in 2 dimensional Subspace

Term-Term Similarity

$$
\begin{aligned}
\text { Rewrite } & \tilde{A} \tilde{A}^{t}= \\
& =\left(T S D^{t}\right)\left(T S D^{t}\right)^{t} \\
& =T S D^{t} D S^{t} T^{t} \\
& =T S^{t} S T^{t} \\
& =(T S)(T S)^{t}
\end{aligned}
$$

Measure similarity in subspace defined by $T S$

Task

How does your programming language support SVD
Do some internet search (~ 10 minutes)
Report your findings

Homework

See sheet

LSA Performance

-LSA consistently improves recall on standard test collections (precision/recall generally improved)

- Variable performance on larger TREC collections
-Dimensionality of Latent Space - a magic number - 300 - 1000 seems to work fine - no satisfactory way of assessing value.
-Computational cost high

Application (by Landauer et. Al)

How Well Can Passage Meaning be Derived without Using Word Order? A Comparison of Latent Semantic Analysis and Humans

Thomas K. Landauer, Darrell Laham, Bob Rehder, and M. E. Schreiner Department of Psychology \& Institute of Cognitive Science University of Colorado, Bould
Boulder, CO $80309-0345$
\{landauer, dlaham, rehder, missy\}@psych.colorado.edu

Rate essay by similarity to existing ones Measure correlation with human rating

Correlation between	
All Essays ($\mathrm{n}=273$)	
Two reader scores:	.65
LSA score and average reader score:	.64
Attachment in children $(\mathrm{n}=55)$	
Two reader scores:	.19
LSA score and average reader score:	.61
Aphasias ($\mathrm{n}=109$)	
Two reader scores:	.75
LSA score and average reader score:	.60
Operant conditioning ($\mathrm{n}=109$)	
Two reader scores:	.68
LSA score and average reader score:	.71

All Essays ($\mathrm{n}=273$)
Two reader scores: . 65
LSA score and average reader score: . 64
Two reader scores:61LSA score and average reader score60
Table 2: Psychology essay results.
Conclusion: drop the right key-words and you are set

Probabilistic Latent Semantic Analysis (PLSA)

Motivation

-Does orthogonally matter?
-Wouldn't a sound statistical foundation be better?

Likelihood of document

$$
P(d o c)=P\left(\text { term }_{l} \mid \text { doc }\right) P\left(\text { term }_{2} \mid \text { doc }\right) \ldots P\left(\text { term }_{L} \mid \text { doc }\right)
$$

Introduce term-frequency matrix X

$$
\prod_{l=1}^{L} P\left(\text { term }_{l} \mid d o c\right)=\prod_{t=1}^{T} P\left(\text { term }_{t} \mid d o c\right)^{A\left(\text { term }_{t}, d o c\right)}
$$

PLSA

Introduce hidden topic

$$
P\left(\text { term }_{t} \mid \text { doc }\right)=\sum_{k=1}^{K} P\left(\text { term }_{t} \mid \text { topic }_{k}\right) P\left(\text { topic }_{k} \mid \text { doc }\right)
$$

Shorthand $\mathrm{t}=$ =term_t

$$
P(t \mid d o c)=\sum_{k=1}^{K} P(t \mid k) P(k \mid d o c)
$$

Relation to LSA?

Likelihood of document

$$
P(d o c)=\prod_{t=1}^{T}\left\{\sum_{k=1}^{K} P(t \mid k) P(k \mid d o c)\right\}^{A(t, d o c)}
$$

PLSA: training

Training objective function

$\sum_{d=1}^{N} \log P(d)=\sum_{d=1}^{N} \sum_{t=1}^{T} A(t, d) \log \sum_{k=1}^{K} P(t \mid k) P(k \mid d)$
which is to be maximisedw.r.t. parameters $\mathrm{P}(t \mid k)$ and then also $\mathrm{P}(k \mid d)$,
subject to the constraints that $\sum_{t=1}^{T} P(t \mid k)=1$ and $\sum_{k=1}^{K} P(k \mid d)=1$.

PLSA: training

Update term-topic matrix

$$
\begin{aligned}
& P l(t, k) \leftarrow P l(t, k) \sum_{d=1}^{N} \frac{A(t, d)}{\sum_{k=1}^{K} P l(t, k) P 2(k, d)} P 2(k, d) \\
& P l(t, k) \leftarrow \frac{P l(t, k)}{\sum_{t=1}^{T} P l(t, k)}
\end{aligned}
$$

Update topic-document matrix

$$
\begin{aligned}
& P 2(k, d) \leftarrow P 2(k, d) \sum_{t=1}^{T} \frac{A(t, d)}{\sum_{k=1}^{K} P 1(t, k) P 2(k, d)} P 1(t, k) \\
& P 2(k, d) \leftarrow \frac{P 2(k, d)}{\sum_{k=1}^{K} P 2(k, d)}
\end{aligned}
$$

PLSA

$\mathrm{P}(\mathrm{t} \mid \mathrm{k})$ for some topics

universe	0.0439
galaxies	0.0375
clusters	0.0279
matter	0.0233
galaxy	0.0232
cluster	0.0214
cosmic	0.0137
dark	0.0131
light	0.0109
density	0.01

drug patients	0.0672
drugs	0.0493
clinical	0.0444
treatment	0.0346
trials	0.0277
therapy	0.0213
trial	0.0164
disease	0.0157
medical	0.00997

cells	0.0675
stem	0.0478
human	0.0421
cell	0.0309
gene	0.025
tissue	0.0185
cloning	0.0169
transfer	0.0155
blood	0.0113
embryos	0.0111

sequence	0.0818
sequences	0.0493
genome	0.033
dna	0.0257
sequencing	0.0172
map	0.0123
genes	0.0122
chromosome	0.0119
regions	0.0119
human	0.0111

years	0.156
million	0.0556
ago	0.045
time	0.0317
age	0.0243
year	0.024
record	0.0238
early	0.0233
billion	0.0177
history	0.0148

bacteria	0.0983	male	0.0558
bacterial	0.0561	females	0.0541
resistance	0.0431	female	0.0529
coli	0.0381	males	0.0477
strains	0.025	sex	0.0339
microbiol	0.0214	reproductive	0.0172
microbial	0.0196	offspring	0.0168
strain	0.0165	sexual	0.0166
salmonella	0.0163	reproduction	0.0143
resistant	0.0145	eggs	0.0138

theory	0.0811
physics	0.0782
physicists	0.0146
einstein	0.0142
university	0.013
gravity	0.013
black	0.0127
theories	0.01
aps	0.00987
matter	0.00954

immune	0.0909	stars	0.0524
response	0.0375	star	0.0458
system	0.0358	astrophys	0.0237
responses	0.0322	mass	0.021
antigen	0.0263	disk	0.0173
antigens	0.0184	black	0.0161
immunity	0.0176	gas	0.0149
immunology	0.0145	stellar	0.0127
antibody	0.014	astron	0.0125
autoimmune	0.0128	hole	0.00824

Comparison LSA and PLSA

From Th. Hofmann, 2000

Non-negative Matrix Factorization

See:
Document Clustering Based On Non-negative Matrix Factorization

Wei Xu, Xin Liu, Yihong Gong

NMF: idea

- Find space that separates clusters better

NMF: the model

- Decompostion of a non-negaitve matrix X in two matrices W and H both non-negative

$$
A=W H
$$

- A: $\mathrm{N} \times \mathrm{M}$ - data matrix
- W: N x R - source matrix
- H: R x M - mixture matrix

NMF: the model

- Determine W and H such that the product WH is as close as possible to A
- W and H are bound to be non-negative values
- Possible metrics
- Kullback-Leibler-Divergenz
- Frobenius-Norm

$$
\begin{gathered}
D A \mid W H \\
\frac{1}{2}|A-W H|^{2}
\end{gathered}
$$

NMF: training

Update

Relation to update From PLSA?

In case the denominator vanishes, add a small number

Homework

Implement NMF for the matrix from the last lecture

Summary

Ways to find latent "semantic" spaces:
-LSA
-PLSA
-NMF
Similar factorizations
Different target functions and constraints

