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1 Introduction

In this work, we introduce a model for sense assign-
ment which relies on assigning senses to the con-
texts within which words appear, rather than to the
words themselves. We argue that word senses as
such are not directly encoded in the lexicon of the
language. Rather, each word is associated with one
or more stereotypical syntagmatic patterns, which
we call selection contexts. Each selection context is
associated with a meaning, which can be expressed
in any of various formal or computational manifesta-
tions. We present a formalism for encoding contexts
that help to determine the semantic contribution of a
word in an utterance. Further, we develop a method-
ology through which such stereotypical contexts for
words and phrases can be identified from very large
corpora, and subsequently structured in a selection
context dictionary, encoding both stereotypical syn-
tactic and semantic information. We present some
preliminary results.

2 CPA Methodology

The Corpus Pattern Analysis (CPA) technique uses
a semi-automatic bootstrapping process to produce
a dictionary of selection contexts for predicates
in a language. Word senses for verbs are distin-
guished through corpus-derived syntagmatic pat-
terns mapped to Generative Lexicon Theory (Puste-
jovsky (1995)) as a linguistic model of interpreta-
tion, which guides and constrains the induction of
senses from word distributional information. Each
pattern is specified in terms of lexical sets for each
argument, shallow semantic typing of these sets, and
other syntagmatically relevant criteria (e.g., adver-
bials of manner, phrasal particles, genitives, nega-
tives).

The procedure consists of three subtasks: (1) the
manual discovery of selection context patterns for
specific verbs; (2) the automatic recognition of in-
stances of the identified patterns; and (3) automatic
acquisition of patterns for unanalyzed cases. Ini-
tially, a number of patterns are manually formulated
by a lexicographer through corpus pattern analysis
of about 500 occurrences of each verb lemma. Next,
for higher frequency verbs, the remaining corpus oc-
currences are scrutinized to see if any low-frequency
patterns have been missed. The patterns are then

translated into a feature matrix used for identifying
the sense of unseen instances for a particular verb.
In the remainder of this section, we describe these
subtasks in more detail. The following sections ex-
plain the current status of the implementation of
these tasks.

2.1 Lexical Discovery

Norms of usage are captured in what we call selec-
tion context patterns. For each lemma, contexts
of usage are sorted into groups, and a stereotypi-
cal CPA pattern that captures the relevant semantic
and syntactic features of the group is recorded. For
example, here is the set of common patterns for the
verb treat.

(1) CPA pattern set for treat:

I. [[Person 1]] treat [[Person 2]] ({at | in} [[Location]])
(for [[Event = Injury | Ailment]]); NO [Adv[Manner]]

II. [[Person 1]] treat [[Person 2]] [Adv[Manner]]
IIIa. [[Person]] treat [[TopType 1]] {{as | like} [[TopType 2]]}
IIIb. [[Person]] treat [[TopType]] {{as if | as though | like}

[CLAUSE]}
IV. [[Person 1]] treat [[Person 2]] {to [[Event]]}
V. [[Person]] treat [[PhysObj | Stuff 1]] (with [[Stuff 2]])

There may be several patterns realizing a single
sense of a verb, as in (IIIa/IIIb) above. Addi-
tionally, many patterns have alternations, recorded
in satellite CPA patterns. Alternations are linked
to the main CPA pattern through the same sense-
modifying mechanisms as those that allow for coer-
cions to be understood. However, alternations are
different realizations of the same norm. For exam-
ple, the following are alternations for treat, pattern
(I):

[[Person 1 <--> Medicament | Med-Procedure | Institution]]
[[Person 2 <--> Injury | Ailment | Bodypart]]

CPA Patterns

A CPA pattern extends the traditional notion of se-
lectional context to include a number of other con-
textual features, such as minor category parsing and
subphrasal cues. Accurate identification of the se-
mantically relevant aspects of a pattern is not an
obvious and straightforward procedure, as has some-
times been assumed in the literature. For example,
the presence or absence of an adverbial of manner in
the third valency slot around a verb can dramatically
alter the verb’s meaning. Simple syntactic encoding



of argument structure, for instance, is insufficient to
discriminate between the two major senses of the
verb treat, as illustrated below.

(3) a. They say their bosses treat them with respect.

b. Such patients are treated with antibiotics.

The ability to recognize the shallow semantic type
of a phrase in the context of a predicate is of course
crucial —for example, in (3a) recognizing the PP as
(a) an adverbial, and (b) an adverbial of manner,
rather than an instrumental co-agent (as in (3b)),
is crucial for assigning the correct sense to the verb
treat above.

There are four constraint sets that contribute to
the patterns for encoding selection contexts. These
are:

(4) a. Shallow Syntactic Parsing: Phrase-level recogni-

tion of major categories.

b. Shallow Semantic Typing: 50-100 primitive shal-

low types, such as Person, Institution, Event, Abstract, Ar-

tifact, Location, and so forth. These are the top types se-

lected from the Brandeis Shallow Ontology (BSO), and are

similar to entities (and some relations) employed in Named

Entity Recognition tasks, such as TREC and ACE.

c. Minor Syntactic Category Parsing: e.g., loca-

tives, purpose clauses, rationale clauses, temporal adjuncts.

d. Subphrasal Syntactic Cue Recognition: e.g.,

genitives, partitives, bare plural/determiner distinctions,

infinitivals, negatives.

The notion of a selection context pattern, as pro-
duced by a human annotator, is expressed as a BNF
specification in Table 1.1 This specification relies
on word order to specify argument position, and is
easily translated to a template with slots allocated
for each argument. Within this grammar, a seman-
tic roles can be specified for each argument, but this
information currently is not used in the automated
processing.

Brandeis Shallow Ontology

The Brandeis Shallow Ontology (BSO) is a shallow
hierarchy of types selected for their prevalence in
manually identified selection context patterns. At
the time of writing, there are just 65 types, in terms
of which patterns for the first one hundred verbs
have been analyzed. New types are added occasion-
ally, but only when all possibilities of using existing
types prove inadequate. Once the set of manually
extracted patterns is sufficient, the type system will
be re-populated and become pattern-driven.

The BSO type system allows multiple inheri-
tance (e.g. Document v PhysObj and Document v
Information. The types currently comprising the
ontology are listed below. The BSO contains type
assignments for 20,000 noun entries and 10,000 nom-
inal collocation entries.

1Round brackets indicate optional elements of the pattern,
and curly brackets indicate syntactic constituents.

Corpus-driven Type System

The acquisition strategy for selectional preferences
for predicates proceeds as follows:

(5) a. Partition the corpus occurrences of a predicate according
to the selection contexts pattern grammar, distinguished
by the four levels of constraints mentioned in (4). These
are uninterpreted patterns for the predicate.

b. Within a given pattern, promote the statistically
significant literal types from the corpus for each argument
to the predicate. This induces an interpretation of the
pattern, treating the promoted literal type as the specific
binding of a shallow type from step (a) above.

c. Within a given pattern, coerce all lexical heads in the
same shallow type for an argument, into the promoted
literal type, assigned in (b) above. This is a coercion of a
lexical head to the interpretation of the promoted literal
type induced from step (b) above.

In a sense, (5a) can be seen as a broad multi-level
partitioning of the selectional behavior for a pred-
icate according to a richer set of syntactic and se-
mantic discriminants. Step (5b) can be seen as cap-
turing the norms of usage in the corpus, while step
(5c) is a way of modeling the exploitation of these
norms in the language (through coercion, metonymy,
and other generative operations). To illustrate the
way in which CPA discriminates uninterpreted pat-
terns from the corpus, we return to the verb treat as
it is used in the BNC. Two of its major senses, as
listed in (1), emerge as correlated with two distinct
context patterns, using the discriminant constraints
mentioned in (4) above.



CPA-Pattern → Segment verb-lit Segment | verb-lit Segment | Segment verb-lit | CPA-Pattern ’;’ Element

Segment → Element | Segment Segment | ’’ Segment ’’ | ’(’ Segment ’)’ | Segment ’|’ Segment

Element → literal | ’[’ Rstr ArgType ’]’ | ’[’ Rstr literal ’]’ | ’[’ Rstr ’]’ | ’[’ NO Cue ’]’ | ’[’ Cue ’]’

Rstr → POS | Phrasal | Rstr ’|’ Rstr | epsilon

Cue → POS | Phrasal | AdvCue

AdvCue → ADV ’[’ AdvType ’]’

AdvType → Manner | Dir | Location

Phrasal → OBJ | CLAUSE | VP | QUOTE

POS → ADJ | ADV | DET | POSDET | COREF POSDET | REFL-PRON | NEG |
MASS | PLURAL | V | INF | PREP | V-ING | CARD | QUANT | CONJ

ArgType → ’[’ SType ’]’ | ’[’ SType ’=’ SubtypeSpec ’]’ | ArgType ’|’ ArgType | ’[’ SType ArgIdx ’]’ |
’[’ SType ArgIdx ’=’ SubtypeSpec ’]’

SType → AdvType | TopType | Entity | Abstract | PhysObj | Institution | Asset | Location | Human | Animate |
Human Group | Substance | Unit of Measurement | Quality | Event | State of Affairs | Process

SubtypeSpec → SubtypeSpec ’|’ SubtypeSpec | SubtypeSpec ’&’ SubtypeSpec | Role | Polarity | LSet

Role → Role | Role ’|’ Role | Benficiary | Meronym | Agent | Payer

Polarity → Negative | Positive

LSet → Worker | Pilot | Musician | Competitor | Hospital | Injury | Ailment | Medicament | Medical Procedure |
Hour-Measure | Bargain | Clothing | BodyPart | Text | Sewage | Part | Computer | Animal

ArgIdx → <number> verb-lit → <verb-word-form>

literal → word word → <word>

CARD → <number> NEG → not

POSDET → my | your | ... INF → to

QUANT → CARD | a lot | longer | more | many | ...

Table 1: Pattern grammar

(6) a. [[Person 1]] treat [[Person 2]]; NO [Adv[Manner]]
b. [[Person 1]] treat [[Person 2]] [Adv[Manner]]

Given a distinct (contextual) basis on which to an-
alyze the actual statistical distribution of the words
in each argument position, we can promote statisti-
cally relevant and significant literal types for these
positions. For example, for pattern (a) above, this
induces Doctor as Person 1, and Patient as bound
to Person 2. This produces the interpreted context
pattern for this sense as shown below.

(7) [[doctor]] treat [[patient]]

Promoted literal types are corpus-derived and
predicate-dependent, and are syntactic heads of
phrases that occur with the greatest frequency in ar-
gument positions for a given sense pattern; they are
subsequently assumed to be subtypes of the particu-
lar shallow type in the pattern. Step (5c) above then
enables us to bind the other lexical heads in these po-
sitions as coerced forms of the promoted literal type.
This can be seen below in the concordance sample,
where therapies is interpreted as Doctor, and people
and girl are interpreted as Patient.

(8) a. a doctor who treated the girl till an ambulance arrived.
b. over 90,000 people have been treated for cholera
c. nonsurgical therapies to treat the breast cancer, which

Model Bias

The assumption within GL is that semantic types
in the grammar map systematically to default syn-
tactic templates (cf. Pustejovsky (1995)). These
are termed canonical syntactic forms (CSFs). For

example, the CSF for the type proposition is a
tensed S. There are, however, many possible real-
izations (such as infinitival S and NP) for this type
due to the different possibilities available from gen-
erative devices in a grammar, such as coercion and
co-composition. The resulting set of syntactic forms
associated with a particular semantic type is called
a phrasal paradigm for that type. The model bias
provided by GL acts to guide the interpretation of
purely statistically based measures.

2.2 Automatic Recognition of Pattern Use

Essentially, this subtask is similar to the traditional
supervised WSD problem. Its purpose is (1) to test
the discriminatory power of CPA-derived feature-
set, (2) to extend and refine the inventory of features
captured by the CPA patterns, and (3) to allow for
predicate-based argument groupings by classifying
unseen instances. Extension and refinement of the
inventory of features should involve feature induc-
tion, but at the moment this part has not been im-
plemented. During the lexical discovery stage, lex-
ical sets that fill some of the argument slots in the
patterns are instantiated from the training exam-
ples. As more predicate-based lexical sets within
shallow types are explored, the data will permit
identification of the types of features that unite ele-
ments in lexical sets.

2.3 Automatic Pattern Acquisition

The algorithm for automatic pattern acquisition in-
volves the following steps:



(9) a. Collect all constituents in a particular argument position;
b. Identify syntactic alternations;
c. Perform clustering on all nouns that occur in a particular
argument position of a given predicate;
d. For each cluster, measure its relatedness to the known
lexical sets, obtained previously during the lexical discovery
stage and extended through WSD of unseen instances. If
none of the existing lexical sets pass the distance threshold,
establish the cluster as a new lexical set, to be used in future
pattern specification.

Step (9d) must include extensive filtering procedures
to check for shared semantic features, looking for
commonality between the members. That is, there
must be some threshold overlap between subgroups
of the candidate lexical set and and the existing se-
mantic classes. For instance, checking if, for a cer-
tain percentage of pairs in the candidate set, there
already exists a set of which both elements are mem-
bers.

3 Current Implementation
The CPA patterns are developed using the British
National Corpus (BNC). The sorted instances are
used as a training set for the supervised disambigua-
tion. For the disambiguation task, each pattern is
translated into into a set of preprocessing-specific
features.

The BNC is preprocessed with the RASP parser
and semantically tagged with BSO types. The
RASP system (Briscoe and Carroll (2002)) gener-
ates full parse trees for each sentence, assigning a
probability to each parse. It also produces a set of
grammatical relations for each parse, specifying the
relation type, the headword, and the dependent ele-
ment. All our computations are performed over the
single top-ranked tree for the sentences where a full
parse was successfully obtained. Some of the RASP
grammatical relations are shown in (10).

(10) subjects: ncsubj, clausal (csubj, xsubj)
objects: dobj, iobj, clausal complement
modifiers: adverbs, modifiers of event nominals

We use endocentric semantic typing, i.e., the head-
word of each constituent is used to establish its se-
mantic type. The semantic tagging strategy is simi-
lar to the one described in Pustejovsky et al. (2002),
and currently uses a subset of 24 BSO types.

A CPA pattern is translated into a feature set,
currently using binary features. It is further com-
plemented with other discriminant context features
which, rather than distinguishing a particular pat-
tern, are merely likely to occur with a given subset
of patterns; that is, the features that only partially
determine or co-determine a sense. In the future,
these should be learned from the training set through
feature induction from the training sample, but at
the moment, they are added manually. The result-
ing feature matrix for each pattern contains features
such as those in (11) below. Each pattern is trans-
lated into a template of 15-25 features.

(11) Selected context features:
a. obj institution: object belongs to the BSO type ’Insti-
tution’

b. subj human group: subject belongs to the BSO type ’Hu-
manGroup’
c. mod adv ly: target verb has an adverbial modifier, with a
-ly adverb
d. clausal like: target verb has a clausal argument intro-
duced by ’like’
e. iobj with: target verb has an indirect object introduced
by ’with’
f. obj PRP: direct object is a personal pronoun
g. stem VVG: the target verb stem is an -ing form

Each feature may be realized by a number of RASP
relations. For instance, a feature dealing with
objects would take into account RASP relations
’dobj’, ’obj2’, and ’ncsubj’ (for passives).

4 Results and Discussion
The experimental trials performed to date are too
preliminary to validate the methodology outlined
above in general terms for the WSD task. Our re-
sults are encouraging however, and comparable to
the best performing systems reported from Senseval
2. For our experiments, we implemented two ma-
chine learning algorithms, instance-based k-Nearest
Neighbor, and a decision tree algorithm (a version of
ID3). Table 2 shows the results on a subset of verbs
that have been processed, also listing the number of
patterns in the pattern set for each of the verbs.2

verb number of training accuracy
patterns set ID3 kNN

edit 2 100 87% 86%
treat 4 200 45% 52%
submit 4 100 59% 64%

Table 2: Accuracy of pattern identification

Further experimentation is obviously needed to
adequately gauge the effectiveness of the selection
context approach for WSD and other NLP tasks.
It is already clear, however, that the traditional
sense enumeration approach, where senses are asso-
ciated with individual lexical items, must give way
to a model where senses are assigned to the contexts
within which words appear. Furthermore, because
the variability of the stereotypical syntagmatic pat-
terns that are associated with words appears to be
relatively small, such information can be encoded as
lexically-indexed contexts. A comprehensive dictio-
nary of such contexts could prove to be a powerful
tool for a variety of NLP tasks.
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